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Abstract. This paper presents a computational design method to obtain collapsible
variations of rigid-foldable surfaces, i.e., continuously and finitely transformable
polyhedral surfaces, homeomorphic to disks and cylinders. Two novel techniques
are proposed to design such surfaces: a technique for obtaining a freeform variation
of a rigid-foldable and bidirectionally flat-foldable disk surface, which is a hybrid
of generalized Miura-ori and eggbox patterns, and a technique to generalize the
geometry of cylindrical surface using bidirectionally flat-foldable planar quadrilat-
eral mesh by introducing additional constraints to keep the topology maintained
throughout the continuous transformation. Proposed methods produce freeform
variations of rigid-foldable structures that have not been realized thus far. Such
a structure forms a one-DOF mechanism with two possible flat states. This enables
the designs of deployable structures useful for packaging the boundary of architec-
tural spaces, space structures, and so on.

1 Introduction

A polyhedral surface composed of rigid facets connected by rotational edges forms

a kinetic mechanism: a rigid folding mechanism. Several collapsible structures are

proposed using this type of kinetic mechanism, such as Miura-ori [Miura 1980] and

eggbox patterns [Brunner 1965] (Figure 1). Such a rigid-foldable and flat-foldable

surface is useful as a deployable and transformable structures in an architectural

context because of the following advantages.

1. The existence of a collapsed state enables compact packaging of the structure.

2. The synchronized complex folding motion produced by constrained rotational

hinges can be controlled with simple manipulation.

3. The transformation mechanism that does not rely on the flexibility of materi-

als can be made out of thick rigid panels and hinges.

4. The watertightness of the surface maintained throughout the transformation

is potentially suitable for the envelope of a space, a partition, and the facade

of a building.
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Figure 1: Folding motions of Miura-ori (Top) and eggbox pattern (Bottom).

In order to apply such kinetic surfaces to design purposes, it is required that we

can control the three-dimensional shape of the surface and its behavior so that they

are consistent with the design requirements. Design requirements in architectural

context include environmental conditions, functional requirements, configuration of

surrounding buildings and structures, and user’s preference. However, since the

rigid-foldability of known surfaces strongly relies on the symmetry of the pattern,

designing such structures could not be done in an ad-hoc approach; the geometric

constraints must be generally investigated to solve an inverse problem of obtaining

a pattern from the resulting form and behavior. The objective of our study is thus to

freely design kinetic forms using design methods based on computational geometry.

As the first step to achieve this goal, the author proposed a freeform design method

of kinetic structures based on origami (developable surface) to provide design vari-

ations of Miura-ori through an interactive design system in which a user can de-

form the surface freely while sustaining the rigid-foldability of the surface ([Tachi

2009a]). This method yields variations of rigid-foldable origami models that have

never been achieved otherwise, however, the method was not general enough for

design applications, especially of architecture, since the developability condition

used is not always an essential condition when we construct structures from mul-

tiple parts. In particular, this developability condition disables the design of rigid-

foldable collapsible cylinders, realization of which can contribute the designs of

surrounding of a volume of a space, collapsible containers, compound surface struc-

tures, and so on. This limitation mainly comes from the fact that a cylindrical surface

cannot have a globally developed state under the conventional definition.

This paper provides a novel method that enables a freeform variation of such rigid-

foldable structure, not restricted by the developability of the surface or the disk

topology. We will solve this design problem by extending and combining the ideas

of generalized Miura-ori [Tachi 2009a] (or flat-foldable 4-valent-vertex origami)
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and generalized eggbox pattern (or discrete Voss surface) [Schief et al. 2007] to pro-

duce bidirectionally flat-foldable planar quadrilateral mesh. Such a mesh has nice

generalized characteristics: it is bidirectionally flat-foldable and produces one-DOF

mechanism. Required design condition is loose compared to purely developable

surface and it allows asymmetric and cylindrical variations. We will show a novel

design method to obtain rigid-foldable collapsible cylinders by deforming symmet-

ric rigid-foldable cylinders of [Tachi 2009b] into asymmetric ones.

2 Geometry of Rigid-Foldable Quadrilateral Mesh Disk

This section shows the geometry of 4-valency rigid-foldable mesh with two flat

states that combines flat-foldable origami surface and discrete Voss surface. A 4-

valency mesh or a quadrilateral-mesh surface in general does not enable a continu-

ous rigid-folding motion because an overconstrained system is constructed. This is

because the configuration of a rigid-foldable structure homeomorphic to a disk can

be represented by the folding angles of edges, while these variables are constrained

at each vertex by 3 equations as it is used in the simulation of rigid origami [Tachi

2009c]; if we are to construct a quadrilateral mesh, then the number of constraints

exceeds the number of variables only by making 3× 3 array. However, Miura-ori

[Miura 1980] and eggbox patterns [Brunner 1965] are known to produce singular

one-DOF mechanisms (Figure 1) because of their redundant constraints. Miura-ori

is a flat-foldable origami surface composed of parallelograms used for packaging

of large membranes in the space. The surface produces a synchronized kinetic mo-

tion of expanding in x and y directions at the same time from a collapsed state to a

completely developed state (Figure 1 Top). Eggbox pattern is a polyhedral surface

similarly composed of parallelograms but is not a developable surface. This has two

flat-folded states and produces a different one-DOF kinetic behavior from that of

Miura-ori; the surface expands in x direction when it collapses in y direction (Fig-

ure 1 Bottom). While Miura-ori is a surface with foldlines folded at the same time,

eggbox pattern is a surface that has two groups of foldlines collapsed at the same

time.

Since Miura-ori and eggbox patterns are surfaces composed of congruent parallelo-

grams, the redundancy of constraints required for the mechanism seem to originate

in its global repeating symmetry. However, the condition to produce such redun-

dancy actually is a result of its intrinsic symmetry, i.e., the angles coincidence at

each vertex, which also contribute to bi-directional flat-foldability of the surfaces

(Miura-ori is developable and flat-foldable. eggbox pattern is flat-foldable in two

directions). The intrinsic symmetries of Miura-ori and eggbox pattern, yield gener-

alized forms of rigid-foldable origami surface [Tachi 2009a] and discrete Voss sur-

face [Schief et al. 2007], respectively. In addition, these surfaces can be merged into

one generalized hybrid surface, i.e., bidirectionally flat-foldable planar quadrilateral

mesh, based on the fact that the behaviors of the two surfaces can be represented us-

ing a common form.



T. Tachi

Figure 2: A corrugated vault used as a transformable architecture that connects two

existing buildings.

2.1 Generalized Miura-ori

The rigid-foldability condition of generalized Miura-ori is presented by [Tachi

2009a]: consider a planar quad mesh surface of disk topology whose vertices are

incident to 4 foldlines; when the surface is developable and flat-foldable, finite rigid-

foldability of the surface is equivalent to the existence of one valid semi-folded state.

This sufficient condition for rigid-foldability yields rigid-foldable generalization of

Miura-ori. The condition also applies to any other degree-4 vertex based patterns

such as assymetric vault pattern shown in Figure 2.

The behavior of the surface is represented by the configuration of fold angles. A ver-

tex with 4 foldlines, and thus with 4 sector angles θi(i = 0,1,2,3), form a one-DOF

mechanism (Figure 3 Top). In the case of developable and flat-foldable surface,

condition of origami (i.e., developability) and flat-foldability given by ∑3
i=0 θi = 2π

and∑3
i=0(−1)iθi = 0, respectively, force the sector angles to satisfy

θ0 = π−θ2 and θ1 = π−θ3. (1)

According to [Tachi 2009a], the fold angles ρi and ρ j incident to the vertex are

related as follows:

tan
ρi

2
=

{
Ai, j tan

ρ j
2 (i− j = 1 or 3 mod 4)

± tan
ρ j
2 (i− j = 2 mod 4)

(2)
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where the latter represents that pairs of opposite foldlines have an equal absolute

folding angles, and Ai, j is the coefficient between these two equivalent pairs deter-

mined by θ0, · · · ,θ3, i.e., intrinsic measure in the crease pattern independent from

the folding angles. Specifically, if |ρ0|= |ρ2|> |ρ1|= |ρ3|,

|A0,1|=
√

1+ cos(θ0 −θ1)

1+ cos(θ0 +θ1)
.

Note that this relationship is a special case of the generalized form of origami vertex

presented by [Huffman 1976].

This gives an explicit configuration of folding angles of all foldlines globally con-

nected via degree-4 vertices:{
tan

ρi(t)
2

}
=

{
tan

ρi(t0)
2

}
tan t

2

tan t0
2

, (3)

where t (0 ≤ t ≤ π) is the parameter that defines the folding amount (t = 0 and

t = π indicate developed and flat-folded states respectively) and
{

tan
ρi(t0)

2

}
is an

arbitrary semi-folded state (0 < t0 < π). Generalized Miura-ori thus shows a kinetic

motion of expanding in x and y directions at the same time.
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Figure 3: The folding

motions of vertices of

origami (Top) and dis-

crete Voss surface (Bot-

tom). Note that set of

planes used is identical.

2.2 Generalized Eggbox Pattern

Eggbox pattern can be generalized as a discrete Voss surface; the rigid-foldability of

discrete Voss surface is proved by [Schief et al. 2007]. Even though the term discrete

Voss surface implies a mesh pattern that represents a smooth surface, corrugated

surfaces such as eggbox pattern is also included in the family, since it is defined

by the intrinsic angular condition that the opposite angles are equal. Every interior
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vertex on a discrete Voss surface is incident to 4 edges (or foldlines) and sector

angles θi (i = 0,1,2,3) that satisfy the following:

θ0 = θ2 and θ1 = θ3. (4)

Note the similarity to (1): in fact, the set of planes that form an origami vertex and

eggbox vertex are identical (Figure 3). According to [Schief et al. 2007], the folding

angles ρi and ρ j are similarly written as the following form:

tan
ρi

2
=

{
Ai, j cot

ρ j
2 (i− j = 1 or 3 mod 4)

tan
ρ j
2 (i− j = 2 mod 4).

If we measure the folding angles of one of the opposite pairs by their complementary

angles ρ′
i = π−ρi, this becomes

tan
ρi

2
=

{
Ai, j tan

ρ′j
2 (i− j = 1 or 3 mod 4)

tan
ρ j
2 (i− j = 2 mod 4).

(5)

Therefore the kinematics of Miura-ori and discrete Voss surface are essentially iden-

tical as represented by Equation (3).

2.3 Hybrid Surface: Bidirectionally Flat-foldable Planar Quadrilateral Mesh

Here, we introduce a new type of functional patterns, i.e., BDFFPQ mesh (defined

later), based on combining the geometry of origami and discrete-Voss surface We

introduce the concept of complementary foldlines, which are edges whose folding

angles are measured by their complementary angles, thus a complementary foldline

folds from ±π to 0 when an ordinary foldline folds from 0 to ±π. By using comple-

mentary foldlines (CFLs) along with foldlines (FLs), we can produce a 4-valency

network that consistently joins the vertices of origami and discrete Voss surfaces, so

that one-DOF kinetic motion exits.

In order to understand this behavior, we define extended “developed state” and “flat-

folded state” as follows:

Developed state: A flat state in which every edge has rotational angle of 0 (thus

foldlines are unfolded and complementary foldlines are folded).

Flat-folded state: A flat state in which every edge has rotational angle of ±π (the

sign shows mountain or valley).

Here, notice that complementary foldlines and foldlines are interchangeable by call-

ing a developed state a flat-folded state and vice versa.

Here we define bidirectionally flat-foldable planar quadrilateral mesh (BDFFPQ
mesh) a 4-valency network mesh surface that follows the following conditions.

• The surface is polyhedral, i.e., composed of planar facets, and every edge is

either FL or CFL.
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• The surface has developed and flat-folded states, where the intersection of the

overlapped facets is ignored.

• Each interior vertex’s incident edges are either 4 FLs, 4 CFLs, or 2 FLs +

2CFLs in which a pair of CFLs or FLs is an opposite pair.

Rigid foldability of such a surface is represented as follows when the surface is

homeomorphic to a disk.

Theorem 1 If and only if BDFFPQ mesh homeomorphic to a disk with more than
one interior vertex has one intermediate folded state, the surface is finitely rigid-
foldable.

Proof: Rigid-foldability of a polyhedral disk surface can be represented by the

existence of a continuous solution in the configuration space. From the developa-

bility and flat-foldability condition, it follows that subnetwork composed of only

FLs (CFLs) must divide the surface completely into one or multiple regions each of

which is assigned with either +1 or −1 such that the signs of adjacent regions are

opposite. The sign indicates the orientation of facet in the flat-folded (developed)

state. Then the developability and flat-foldability of the network for each vertex is

represented as follows:

developability:

{
∑3

i=0 σdev(i)θi = 0 for 4CFL or 2FL + 2CFL vertex

∑3
i=0 θi = 2π for 4FL vertex,

(6)

flat-foldability:

{
∑3

i=0 σff(i)θi = 0 for 4FL or 2FL + 2CFL vertex

∑3
i=0 θi = 2π for 4CFL vertex,

(7)

where σdev(i) and σff(i) indicate the assigned signs of the facet incident to the sector

angle i in the developed and flat-folded states respectively.

A 2FL+2CFL vertex satisfies ∑3
i=0 σ(i)θi = 0 for both σ in developed and flat-

folded states ({σ(0),σ(1),σ(2),σ(3)} = {1,1,−1,−1} and {1,−1,−1,1}); there-

fore θ0 = θ2 and θ1 = θ3. Hence, the vertex is a discrete Voss vertex and the folding

motion follows (5). A 4FL or 4 CFL vertex is essentially a vertex of Miura-ori and

the folding angles of incident edges follow the kinetic motion represented by (3).

Since we represent the folding angles of complementary foldlines by their comple-

mentary angles, these relations can be represented in the following single form:

tan
ρi

2
= A′

i, j tan
ρ j

2
,

where A′
i, j = 1/Ai, j for 4CFL vertices. Since all the foldlines are connected to each

other, the transformation follows (3). Therefore if and only if there exists one in-

termediate configuration
{

tan
ρi(t0)

2

}
, there exists a continuous valid configurations{

tan
ρi(t)

2

}
. �
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3 Design Variations of Rigid Foldable Surface

For obtaining design variations, we adopt the perturbation based approach used in

[Tachi 2009a]. We first obtain a valid existing BDFFPQ mesh in a flat state; this

can be done quite easily, e.g., by using a square grid and assigning mountain, valley,

complementary mountain, and complementary valley to the edges. Here, we can

roughly design the kinetic behavior since an origami vertex tries to expand the sur-

face in two directions at the same time, while a discrete Voss vertex tries to expand

in one direction while collapsing in the other direction.

Then we deform the pattern while sustaining the developability and flat-foldability

conditions. The configuration of the mesh surface is represented by the coordinates

of vertices x forming a triangular mesh whose edges are either triangulation edges

or complementary or ordinary foldlines. This triangular mesh satisfies the planarity

condition for each facet and flat-foldability (7) and developability (6) conditions for

each interior vertex. Thus an infinitesimal deformation of mesh configuration must

satisfy:

c(x) =

⎡
⎣ cdev (x)

cff (x)
cplanar (x)

⎤
⎦= 0, (8)

where cdev (x) is a NVint-vector (NVint is the number of interior vertices) whose ele-

ment is {
∑3

i=0 σdev(i)θi for 4CFL or 2FL + 2CFL vertex

2π−∑3
i=0 θi for 4FLvertex,

cff (x) is a NVint-vector whose element is{
∑3

i=0 σff(i)θi for 4FL or 2FL + 2CFL vertex

2π−∑3
i=0 θi for 4CFL vertex,

and cplanar (x) is a vector with dimension of the number of triangulating edges, and

its element is its corresponding folding angle ρi.

Since the number of variables exceeds the number of constraints for a quadrilateral

mesh structure with multiple boundary edges, the Jacobian matrix of the constraint[
∂c
∂x

]
is a rectangular matrix whose number of columns exceeds the number of rows.

An infinitesimal solution space of this constraint can be calculated as:

Δx =

(
I−
[

∂c
∂x

]+ [∂c
∂x

])
Δx0, (9)

where
[

∂c
∂x

]+
is the pseudo-inverse (Moore-Penrose generalized inverse) of the Jaco-

bian matrix, and Δx0 represents an arbitrary vector. Equation (9) calculates the valid

perturbation closest to Δx0 by orthogonal projection to the solution space; therefore,
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the user input such as the drag motion of vertices through GUI can be used as Δx0
in the implementation system of the method. A larger deformation of the shape can

be achieved by accumulating small deformation using Euler integration while elim-

inating the residual c by the Newton-Raphson method. Figure 4 shows an example

process of design in a design system that can interactively solve Equation 9 while

displaying the 3D configuration, flat-folded state, and developed state of the surface.

Figure 4 shows an example process of design in a design system that can interac-

tively solve Equation 9 while displaying the 3D configuration, flat-folded state, and

developed state of the surface.

Figure 4: The design process of hybrid pattern obtained by deforming a square grid.

Red and dark blue lines indicate mountain and valley foldlines, and pink and light

blue indicate complementary mountain and valley foldlines. Each screen shows

3D configuration (left) developed state (upper-right) and flat-foldable shape (lower-

right).

The proposed method succeeded in generalizing eggbox pattern and hybrid

BDFFPQ mesh. Figure 5 shows an example of a generalized eggbox pattern that

has “globally” positive curvature surface, and Figure 6 is an example complex

foldable structure based on hybrid surfaces.

4 Rigid Foldable Cylinder

In an architectural context, collapsible cylindrical surfaces are a significant design

target since a cylinder qualitatively surrounds a volume of space. Here, note that

a cylindrical surface is one of the best possible solutions in this direction since a
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Figure 5: The folding motion of a generalized eggbox pattern.

Figure 6: The folding motion of hybrid BDFFPQ mesh.

topologically closed polyhedron, which is ideal in the sense of enclosure of a space,

is actually known to forbid a rigid folding motion with volume change as the bellows

conjecture [Connelly et al. 1997] states. Although several designs are proposed to

enable collapsible and non-rigid-foldable cylinders such as triangulated cylinders

[Guest and Pellegrino 1994] and single curved corrugated surface [Hoberman 1993],

these exiting designs relied on the flexibility of each facet for the folding motion;

they were not applicable to smooth kinetic mechanisms that work with stiff materials

and mechanical hinges often required for architectural-scale structures.

[Tachi 2009b] gives a family of cylindrical surfaces and compounds of cylinders

that are rigid-foldable and flat-foldable, by solving the angular identity equations via

constructing a symmetric modular cylinder based on rotational symmetry and then

array copying the obtained module in an axial direction. This successfully produces
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Figure 7: A closed strip of facets (Left). A loop can continuously shrink or expand

using conditions around vertices (Right).

a folding motion that does not separate the structure into an open disk. However,

the derived surface can only have a constant section along an axis in this approach,

and the design variations are limited. Producing freely designed cylindrical surface

is the goal of the work described in this section.

The biggest issue in the design of cylindrical surface is that the local condition

around each interior vertex is not enough because loops surrounding a hole can

geometrically separate by folding; and therefore cylindrical BDFFPQ mesh is not

proved to be rigid-foldable in general. In general, it is required that for any closed

strip consisting of k facets, the strip does not separate by the folding motion of

hinges. We assign a local coordinate to each facet i and denote the local affine

transformation from i-th to i+1-th coordinates by 4×4 matrix Ti,i+1({ρi}) (Figure

7 Left). This transformation is regular and the inverse can be described as T−1
i, j =

T j,i. The condition thus is represented as, there exists a vector function ρi(t) (0 ≤
t ≤ π) that satisfies the following for any loop of facet strip:

T0,1T1,2 · · ·Ti,i+1 · · ·Tk,0 ≡ I. (10)

If the facet fan around each vertex is ensured to be rigid-foldable, loop condition

around the vertex modifies the condition along a loop to another homologous loop.

For example, in Figure 7 right, the transformation from facet 0 to 5 can be simplified

as:

T0,1T1,2T2,3T3,4T4,5 ≡ T0,1T1,4T4,5, (11)

using the condition around an interior vertex: T1,2T2,3T3,4T4,1 ≡ I. Therefore, the

rigid-foldability of a disk with a hole (or n holes) can be represented by the com-

bination of the local rigid-foldability around each interior vertex and the condition

around the hole (or the n-holes).

Since BDFFPQ mesh satisfies local rigid-foldability conditions around vertices, the

problem of obtaining a rigid-foldable cylindrical BDFFPQ mesh turns into a prob-

lem of obtaining a state with one rigid-foldable loop connected to the surface. We

transform an existing rigid-foldable cylinder while ensuring the rigid-foldability of

one loop satisfied. In order to do this, we use an isotropic type of rigid-foldable

cylinders from [Tachi 2009b] as an initial state, which are symmetrically repeating

structures constructed using the combination of degree-4 vertices termed folds and
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elbows producing a valid loop motion, where a fold and an elbow are symmetric

cases of origami vertex and discrete Voss vertex, respectively, in our interpretation.

Therefore the cylinder is a symmetric type of rigid-foldable cylindrical BDFFPQ.

Since the exact rigid-foldability condition around a loop is still not fully investi-

gated, we guarantee the rigid-foldability of the whole model by using a sufficient

condition: one loop around the hole is unchanged from the original symmetric cylin-

der. We pick up a strip loop along one of the boundaries that exactly produces a one-

DOF motion and rigidify this part using a rigid bar model, while we deform other

parts under the local conditions of developability, flat-foldability, and planarity of

polygons. The developability and flat-foldability keep the sector angles incident to

vertices between rigid strip and flexible BDFFPQ strips fixed and enable a one-DOF

motion.

We obtained asymmetric form variations from one symmetric cylindrical structure

using the design system that solves BDFFPQ mesh and extra constraints. The de-

sign process is shown in Figure 8, and Figure 9 shows the derived crease pattern of

the design. The pattern shows the location of foldlines in the developed state (note

that the lines are drawn on multiple layers since we use extended definition of devel-

oped state). Here, we can notice sets of parallel lines remaining in the generalized

pattern. This implies the limitation of our method since this globally symmetric be-

havior forbids cylinders to change their overall radius; this may restrict the design

applications of the cylinders. Since this behavior presumably originates in the fixed

boundary of the surface, investigating the exact rigid-foldability condition around a

loop and loosening the design constraints can contribute to more flexible designs of

rigid-foldable cylinders, which still remains to be a future work.

5 Materialization

Because of the developability of the surface, the structure applied for a small scale

object can be manufactured from sheets of material such as paper and plastics. The

pattern can be first perforated by cutting plotter, laser cutter, or other CNC 2-axis

machines on sheets of thin and hard materials, then pasted together, and folded

to form a three-dimensional shape. Careful folding control is needed only at the

beginning of the fold; once it is semi-folded, the surface folds automatically since

the pattern produces a one-DOF motion. Figure 10 shows a folded model of a rigid-

foldable cylinder designed using the proposed method.

For a larger scale architectural structure such as shades, retractable roofs, and trans-

formable partitions, the following thickening method can be used to produce a ro-

bust kinetic structure. Each facet is first substituted by two layers of constant thick-

ness panels whose contact plane is the ideal geometric surface. In order to avoid the

intersection of panels by the folding motion of 0 ≤ ρi ≤ π−δi for each foldline, the

boundary of the panel in the valley side of the surface is relocated on an offset of

the foldline by t cot δ
2 , where t is the thickness of the panel (Figure 11). This yields
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Figure 8: A design process of rigid-foldable cylinder. The initial state is a cylinder

by [Tachi 2009b]. The surface is deformed keeping the condition of BDFFPQ mesh

while a loop strip (two strips in this redundant case) is maintained to be rigid, as

indicated by green rigid bars.

Rigid Part

Figure 9: A crease pattern of generalized cylinder.

designs of kinetic structure composed of rigid panels using their edges as rotational

hinges as shown in Figures 12 and 13. The hinges can be constructed mechanically

or using a sheet or cloth of negligible thickness between panels; in the latter method,

the cloth also becomes a watertight covering.
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Figure 10: Folded model of a rigid-foldable cylinder. Left: in the developed state,

Middle:Intermediate state, Right: flat-folded state.

δt

t cot(δ/2)

Figure 11: Thickening using two layers of constant thickness panels.

Figure 12: Cylindrical rigid-foldable BDFFPQ mesh consisting of thick panels.

6 Conclusion

In this paper, we presented a design method of rigid-foldable flat-foldable disks

and cylinders by introducing bidirectionally flat-foldable planar quadrilateral

(BDFFPQ) meshes and their generalization method. The concepts of BDFFPQ

mesh, complementary foldlines, and extended definitions of developed and flat-

folded states successfully unify and generalize the flat-foldable origami and discrete

Voss surfaces. This generalization enables the perturbation based method that can
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Figure 13: Folding motion of cylindrical structure using thick panels.

freely control the shape of the surface in a direct way; the method yields various

designs of rigid-foldable and bidirectionally flat-foldable polyhedral disk. We also

investigated the rigid-foldability of a cylindrical surface and its sufficient condition

to design a rigid-foldable cylinder. A design method by modifying a cylindrical

BDFFPQ mesh with one fixed loop copied from a known rigid-foldable cylindrical

structure is introduced. The method enables us to obtain a novel generalized form

of rigid-foldable flat-foldable surfaces that can be implemented for architectural

design purposes.

It should be noted that we used sufficient condition of the rigid-foldability in this

paper and did not provide the exact condition, which still remains to be an unsolved

problem as it is seen in [Stachel 2010]. The sufficient condition for enabling cylin-

drical topology also made the deformation less flexible, the effect of which can be

observed in the globally parallel edges. Deriving a more general condition of the

rigid-foldability of cylindrical surface and thus enabling a less constrained design is

one of the future works of this study.
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