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Summary: In this paper, we propose a novel computational method to simulate and design origami whose form is governed by the equilibrium of 
forces from the elastic bending of each panel. In special, we explore statically indeterminate origami structure that can be manipulated by pin 
supporting finite number of vertices. The computational method is proposed so that we can interactively explore the design space of such origami 
form. The concept of kinematic origami tessellation based on bending of panels is introduced. 
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1. INTRODUCTION 

The form of origami made of thin sheet material is governed by bending 
as well as rigid origami mechanism, i.e., panel and hinge mechanism. 
For example, some classes of quadrangle-based origami form one-DOF 
mechanism as rigid origami while such a structure can be flexibly bent 
and twisted when each quadrangle panel bends in the diagonal direction 
(Fig. 1). Here, the form is governed by the boundary conditions and 
equilibrium of stresses from the bending of each panel. This yields an 
interesting variety of forms with double curvatures potentially useful for 
the fabrication based on self-folding and bending and for transformable 
and flexible structures and architectural components for responsive 
environments. However, existing kinematic method for rigid origami 
simulation cannot be applied to appropriately capture such an elastic 
behavior of origami. 

In this paper, we present a novel computational method for interactively 
simulating and designing origami whose form is governed by the 
bending of each panel. The bending of each panel is modeled by an 
angular spring between facets. The valid form is described by the 
equilibrium of the bending moment. Unlike a straightforward form-
finding approach based on minimizing bending energy while fixing the 
support conditions, we introduce geometric constraints that keep the 
form to be under equilibrium. Our method naturally avoids impossible 
support conditions by handling support positions also as variables. We 
introduce an interactive form finding system of such elastic origami. We 
introduce the concept of an elastic origami tessellation that can be 
kinematically controlled by actuating the positions of the supporting 
vertices. 

 

Fig. 1: Twisting Miura-ori. 

2. BENDING 

We first represent an origami surface as a triangular mesh rigid origami 
by triangulating non-triangular facets (quadrangles etc.) and also by 
adding sufficient number of foldlines representing the smooth bending 
behavior. This model can be represented as an unstable truss mechanism 
in which each edge is a rigid bar. Such a mechanism has ݊଴ െ 3 degrees 
of freedom of transformation when ݊଴ is the number of edges on the 
boundary of the mesh, if the structure is a topological disk [1]. 

Then, the form is stabilized by the equilibrium of the force from the 
elastic bending of each panel which is represented by the angular springs 
at the edges added to triangulate panels. The angular moment ܯ௜ሺߩ௜ሻ at 
edge ݅  is given by the function of the folding angle ߩ௜ . The angular 

moments are first converted into equivalent forces applied at the nodes. 
Following the notation in Fig. 2, Angular moment ܯ௨௩  at edge ݒݑ 
applied to triangle ݓݒݑ is equivalently represented by the forces ܎௨, ܎௩, 
and ܎௪ at vertices ݒ ,ݑ, and ݓ, respectively, as 
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where ݄௪ is the height, and ߠ௨ and ߠ௩ are the base angles when edge ݒݑ 
is set as the base.  

Fig. 2: Force applied to triangle uvw. 

Here, we assume the constant stiffness angular spring as, 
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where ݈௜ is the length of the edge and ݄௜ is the mean height. In this case, 

we use harmonic mean 
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൰ when ݓݒݑ and ݓݑݒᇱ denote 

the incident two triangles.  

Here, Equation (4) is chosen so that the angular moment is 1) 
proportional to the edge length when the height is constant and 2) scale 
independent when the shapes are similar. These properties are necessary 
because of the consistency with respect to 1) splitting and 2) scaling 
operations. 1) If edge of length ݈ is split into arbitrary two portions with 
lengths ݈ଵ  and ݈ଶ  ( ݈ଵ ൅ ݈ଶ ൌ ݈ ), the moment must satisfy ܯሺ݈ଵሻ ൅
ሺ݈ଶሻܯ ൌ ሺ݈ሻܯ  because otherwise the same geometric forms with 
different meshing can produce different angular moment. 2) The total 

bending energy of thin elastic shell ܧ is given by ܧ ∝
ଵ

ଶ
׬  If .ܣሻଶ݀ܠሺߢ

the bent form is scaled by factor ݏ , then the curvature is given by 

ሻܠሺ′ߢ ൌ ′ܣ and the area ݏ/ሻܠሺߢ ൌ ′ܧ ,Then .ܣଶݏ ൌ ܯ and thus ܧ ൌ
డா

డఘ
 is 

scale independent (Fig. 3). 

The forces are then written as 
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The equilibrium of bending and axial forces is a necessary condition for 
the model to be in a valid configuration. Here, we use force densities 
௨௩ݓ ൌ ௨݂௩/݈௨௩  to represent the axial force  ௨݂௩  at edge ݒݑ . Then, for 
each structurally unconstrained vertex u, 
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For structurally constrained vertex ݑ  (pin supported), െ۴௨  equals the 
reaction force from the support. The concept of force density originates 
in [2]; however, we allow force densities to vary unlike in the original 
force density method, in which ܟ is constant. The configuration of the 
structure is represented by the vertex coordinates  ܠ ൌ ሼܠଵ
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Fig. 3: Consistency with respect to splitting (top) and scaling (bottom). 

3. CONSTRAINTS 

By introducing additional geometric constraints for origami into this 
system, we can obtain design variations of bent origami form. We 
assume that the crease pattern is unchanged, i.e., the lengths of the edges 
(including triangulating edges) are preserved. Such a condition can be 
written as  
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where ݈௜
଴ is the target length of the edge ݅. Then, the overall constraints 

are represented as 
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where the elements of Jacobean matrix 
డ۴

డܟ
 and  
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డܠ
 are, 
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Because the interior angle of each facet and the length and stiffness of 

each edge are constant, the elements of 
డ۴

డܠ
 is written as 

		
߲۴௨
௩ܠ߲

ൌ ෍
߲۰௨
௜ߩ߲

௜ߩ߲
௩ܠ߲

	
ୣୢ୥ୣ	௜	ୟୢ୨ୟୡୣ୬୲	
୭୰	୧୬ୡ୧ୢୣ୬୲	୲୭	௨

൅ ෍
߲۰௨
௙ܖ߲

௙ܖ߲
௩ܠ߲

	
୤ୟୡୣ	௙	

୧୬ୡ୧ୢୣ୬୲	୲୭	௨

൅ 	
௨ۯ߲

௩ܠ߲
. ሺ14ሻ 

Here, by referring to equations (5), (6), and (7), 
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linear combination of 
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where unit vectors ܕ ,ܔ, and ܖ ൌ ௙ܖ  compose an orthogonal frame as  
shown in Fig.4. The last term in Equation (14) represents the force 
density method when force densities are constant. 
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Fig. 4: Notation of orthogonal unit vectors. 

4. SOLVING CONSTRAINTS 

In a generic situation, Equations (8) and (10) yield an underdetermined 
system when multiple points are specified as pin supports. The number 
of degrees of freedom including 6 degrees of rigid motion is given by 
3݊ୱ where ݊ୱ is the number of support. This means that if we fix the 
positions of supporting vertices, we can obtain unique solution or 
discrete solutions. Therefore, straightforward method for obtaining a 
bending-active form is to minimize the bending energy while fixing the 
positions of the support arbitrarily.  However, some set of support 
positions do no yield a valid bending form, and thus the design 
parameters cannot be arbitrarily set.  

Our geometric approach naturally avoids this problem by directly 
solving the equilibrium conditions and assuming that the positions of the 
support are also variables. Therefore, the support configuration can be 
inversely calculated through 3D form finding. Equations (8) and (10) are 
satisfied in a state where each bending edge ݅ satisfies ߩ௜ ൌ 0 and no 
force is applied to each edge ܟ ൌ ૙. From such an initial solution, we 
can obtain a variety of forms through continuous variation satisfying 
Equation (11). We use an interactive approach by orthogonally 

projecting an estimate variation ൜
δܠ૙
δܟ଴

ൠ specified by the user input to the 

linear subspace using Moore-Penrose generalized inverse	۱ۺ
ା as, 

 ቄδܠ
δܟ

ቅ ൌ ሾ۷ െ ۺ۱	
ା۱ۺሿ ൜

δܠ૙
δܟ଴

ൠ, (17) 

similarly to solving kinematics of unstable transformable structures [3]. 
In the design system, the variation is discretized and numerically 
integrated. In order to eliminate the accumulated errors, generalized 
Newton-Raphson’s method is applied. The generalized inverse solution 
for each step is calculated using the conjugate gradient method. 

The initial estimate variation is indicated by dragging the vertices of the 
displayed structure through graphical user interface. Here, an interesting 
aspect is that the positions of structurally unpinned vertex can be 
directly modified, or even geometrically pinned to a given 3D position. 
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5. DESIGN EXAMPLES 

5.1. Quad Mesh 

We apply the design method to obtain form variations of quadrangle 
mesh origami. Miura-ori and Eggbox patterns are regarded as 
overconstrained one-DOF mechanisms when they are modeled as rigid 
origami, however when the bending behavior of each quadrangle is 
taken into account, their first eigenmodes can be globally anticlastic 
(Miura-ori) and synclastic (eggbox pattern) deformations as investigated 
by Shcenk and Guest [4].  

Fig. 5 shows the form variations of Miura-ori in an equilibrium when 6 
points on the boundary are set as the pin support of the structure. In total, 
the number of degrees of freedom is essentially determined by the 
support condition. With 6 pin supports, the structure forms a mechanism 
with 12 degrees of freedom (11 elastic + 1 rigid). Fig. 6 shows the form 
variations of eggbox pattern by varying the initial rigid origami state 
while the structure is supported at 4 points on the boundary, resulting in 
a mechanism with 6 degrees of freedom of transformation. Valid 
configurations include synclastic and anticlastic surfaces. 

 

5.2. Kinematic Tessellated Surface 

Since the positions of the support pins are inversely derived from the 
surface configuration, we can use our idea to the development of a 
kinematic surface system using thin elastic tessellated surface and small 
number of actuators. The concept is to use the design system to freely 
modify the 3D surface in the system while the surface configuration is 
interpreted as the positions of the support. A continuous transformation 
is thus recorded as the footprints or the paths of the supporting vertices, 
which can be used to control the physical tessellated origami model to 
form a freeform doubly curved surface. Fig. 7 Illustrates the concept of 
kinematic surface using the support pins as the controller. 

5.3. Uncreased Surfaces 

We can also approximate the bending of uncreased surfaces by 
appropriately meshing the surface along the rulings of the bent surfaces. 
Fig. 8 shows the calculated bending behavior of an elastic fan whose 
center point has a point crease. Fig. 9 represents a bent ribbon. This 
approximation qualitatively well captures the behavior of the bending of 
an uncreased continuous sheet. However, an uncreased developable 
sheet is a ruled surface whose ruling pattern can also continuously 
change. In order to truly capture this characteristic, a new method with 
the change in the mesh structure is necessary. 

 

Fig. 5: Deformation of Miura-ori. Red circles and the segment from the circle indicate the support and the reaction force, respectively. 

 

Fig. 6: Deformation of an eggbox sheet. 
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Fig. 7: Kinematic surface actuated by controlling the positions of 9 
points (reaction force drawn in blue). The trajectory of the support is 
drawn in red. 

  
Fig. 8. Fan with a point crease in the middle. 

  
Fig. 9. Bending-active ribbon. 

6. CONSIDERATION OF THE DIMENSION 

In our method, the variation in the vertex coordinates δܠ and the force 
densities δܟ  are packed in one vector variable. Since Equation (17) 
performs an orthogonal projection in the configuration space, the 
distance function in the configuration space can affect the result. For 
consistency, we describe ܟ as in the length unit and thus ݇௨௩   in the 
cubed length. In order to avoid scale dependency, we use average length 
of the edge to normalize these parameters when we initialize the model. 
We can later scale the force densities proportionally; the scaling factor 
affects how the form responds to a given input deformation. The force 
densities can easily adapt to a given deformation when they are scaled 
smaller; as a relative result, the deformation is closer to the original 
user’s input. 

7. CONCLUSION AND FUTURE WORKS 

We introduced a novel method to design origami forms governed by the 
bending of the panels by representing the configuration by the vertex 
coordinates and force densities, and then directly solving the equilibrium 
conditions as geometric constraints that form an underconstrained 
system. We introduced an interactive design system in which the user 
can intuitively find forms under equilibrium. Using the system, design 
variations of quadrangle panel origami tessellation models were 
achieved as well as an approximation of uncreased developable surface 
with bending. This leads to the idea of kinematic tessellated surfaces that 
can be controlled by actuating a small number of support vertices. 

Our method assumes that the patterns do not change. Since the 
relocation of the rulings is essential in the bending of smooth 
developable surface, we would like to extend our method so that it 
allows for the change in the pattern. This is supposed lead to the 
simulation and design of curved folding structures. Another future work 
to be done is to treat the elastic stretch of the sheet as well as bending to 
capture different types of buckling of sheet material. 
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