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ABSTRACT

In this research, we study a method to produce families of
origami tessellations from given polyhedral surfaces. The re-
sulting tessellated surfaces generalize the patterns proposed by
Ron Resch and allow the construction of an origami tessella-
tion that approximates a given surface. We will achieve these
patterns by first constructing an initial configuration of the tes-
sellated surfaces by separating each facets and inserting folded
parts between them based on the local configuration. The initial
configuration is then modified by solving the vertex coordinates
to satisfy geometric constraints of developability, folding angle
limitation, and local non-intersection. We propose a novel ro-
bust method for avoiding intersections between facets sharing
vertices. Such generated polyhedral surfaces are not only ap-
plied to folding paper but also sheets of metal that does not allow
180◦ folding.

INTRODUCTION

Origami is the art of folding a sheet of paper into various forms
without stretching, cutting, or gluing other pieces of paper to it.
Therefore, the concept of origami can be applied to the manu-
facturing of various complex 3D forms by out-of-plane deforma-
tion, i.e., bending and folding, from a watertight sheet of hard
material such as paper, fabric, plastic, and metal. By defini-
tion, origami is a developable surface; however, unlike a single
G2 continuous developable surface, i.e., a single-curved surface,
origami enables complex 3D shapes including the approximation

of double-curved surfaces. Therefore, by utilizing origami, we
can create a desired surface from a single (or a small number of)
developable part(s), instead of using the papercraft approach of
making an approximation of the desired surface by segmenting it
into many single-curved pieces and assembling them again.

An advantage of folding for use in fabrication is that the re-
sulting 3D form is specified by its 2D crease pattern because
of the geometric constraints of origami. This helps in obtain-
ing a custom-made 3D form by half-cutting, perforating, or en-
graving an appropriately designed 2D pattern by a 2- or 3-axis
CNC machine such as a laser cutter, cutting plotter, and milling
machine. Origami fabrication can be a fundamental technology
for do-it-yourself or do-it-with-others types of design and fab-
rication. Here, computational methods are required for solving
the inverse problem of obtaining a crease pattern from a given
folded form based on the topological and geometric properties
that origami has.

A generalized approach to realize the construction of an arbitrary
3D origami form is to use theOrigamizermethod [1], which pro-
vides a crease pattern that folds the material into a given polyhe-
dron. The method is based on creating flat-folded tucks between
adjacent polygons on the given surface and crimp folding them
to adjust the angles such that they fit the 3D shape of the surface.
However, the flat folds, i.e., 180◦ folds, and the crimp folds that
overlays other flat folds on the folded tucks produce kinemati-
cally singular complex interlocking structures. This forbids the
origami model to be made with thick or hard materials, and is a
significant disadvantage in applications to personal or industrial
manufacturing processes. Additionally, even as a folding method
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for thin sheets of paper, it requires an expert folder to fold such
complex origami models.

On the other hand, important designs of 3D origami tessellation
patterns and/or their structural applications have been investi-
gated, e.g., series of 3D origami tessellations by Fujimoto [2],
PCCP shells and Miura-ori [3], tessellation models by Huffman
(see [4] for the reconstruction work), and Resch’s structural pat-
terns [5, 6]. In this paper, we focus on the series of patterns pro-
posed by Resch in the 1960s and 70s; one of these patterns is
shown in Figure 1. If we look at its final 3D form, we can ob-
serve that the surface comprises surface polygons and tucks to
be hidden similar to the origamizer method; the difference is that
the tuck part is much simpler and can exist in a half-folded state
as well (Figure 2). The flexibility of a half-folded tuck not only
avoids interlocking structures but also controls the curvature of
the surface by virtually shrinking the surface to form a double-
curved surface. The pattern in Figure 1 forms a synclastic (posi-
tive Gaussian curvature) surface when it is folded halfway. How-
ever, possible 3D forms are limited by their 2D patterns, e.g., the
aforementioned pattern cannot fold into an anticlastic surface.
In order to obtain a desired freeform double-curved surface, the
generalization of the 2D patterns from a repetitive regular pattern
to appropriately designed crease patterns is necessary.

The author had previously proposed the systemFreeform
Origami for interactively editing a given pattern into a freeform
by exploring the solution space or hypersurface formed by the
developability constraints [7]. However, the method for generat-
ing the initial pattern suited for the target 3D form was not inves-
tigated in this approach. Moreover, collisions between facets at
each vertex are not sufficiently taken into account in the existing
method, whereas in complex tessellated origami models, such as
the one we are targeting at in this study, the collision between
facets is fundamental because facets sharing vertices frequently
touch each other.

In this paper, we propose a system for generating 3D origami tes-
sellations that generalize Resch’s patterns. This is achieved by
inserting a tuck structure in the 3D form and numerically solving
the geometric constraints of the developability and local colli-
sion (Figure 3). First, we delineate the method for generating the
topology and initial estimate configuration of the tessellation pat-
tern from a given polyhedral surface. Then, we propose a novel,
robust method for numerically solving the developable config-
uration, taking into account the local collisions between facets
sharing vertices. We illustrate design and fabrication examples
based on this method.

FIGURE 1. Regular triangular tessellation by Resch.
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FIGURE 2. Origamizer and Resch’s tessellation. Both are comprised
of surface polygons and tucks that are hidden. Notice that Resch’s pat-
tern can have the tuck folded halfway, whereas origamizer vertex keeps
the tuck closed because of the crimp folds.
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FIGURE 3. The process for obtaining a freeform origami tessellation.

GENERATING INITIAL CONFIGURATION

We first generate the families of origami tessellations from a
polyhedral tessellation. Since the initial polyhedral mesh cor-
responds to the patterns that appear on the tessellated surface,
the surface can be re-meshed to have a homogeneous or adaptive
tessellation pattern using established algorithms for triangulating
or quadrangulating meshes. Here, we focus on the topological
correctness and the validity of the mountain and valley assign-
ment of fold lines and ignore the validity of the material being an
origami surface.
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Basic P attern

The basic Resch-type origami tessellation is generated by the in-
sertion of a star-like folded tuck; here, we call such a structure a
waterbomb tuck1. First, we assume that every vertex of the pla-
nar tessellation has an even number of incident edges, and thus
the facets can be colored with two colors (say, red and blue) sim-
ilar to a checkerboard pattern. For each vertex with 2n≥ 6 edges,
we insert a star tuck comprising a corrugated triangular fan with
2n triangles surrounding thepivot vertexcreated on the backside
offset position of the original vertex. The star tuck structures are
inserted by splitting facets, where the split occurs only at one of
the sharing vertices of the adjacent facets. The separating ver-
tex is chosen such that from the viewpoint of the vertex, the left
and right incident facets are colored red and blue, respectively
(Figure 4 Top).

For a general tessellation that is not colored into a checkerboard
pattern with a vertex incident to odd number of edges, we color
every facet red and insert a blue digon between each pair of ad-
jacent facets, so that every vertex withn edges is replaced by a
2n-degree vertex (Figure 4 Bottom). This makes it possible for
any mesh connectivity to be used as the initial mesh.

In general, there is no guarantee that a developable mesh can
be constructed with this procedure alone. Special well-known
cases, such as regular triangular, quadranglular, and hexagonal
tilings allow the construction of developable meshes as shown
in Figure 5, when the depthd of the pivot vertex is adjusted to
ℓcotπ/n, whereℓ is the length of the edges, and 2nis the number
of boundary edges of the star tuck. For a non-planar general
polyhedron, we use the value ofd above and the normal vector at
the vertex for determining the offset position of the pivot vertex.
Then, we parametrically shrink each facet by scaling with respect
to its center by 0< s≤ 1. This builds up gaps between facets to
make the connecting tuck in a halfway-unfolded state.

Variations

Figure 6shows variations of the parametric tuck structures that
can be used for the construction of origami tessellations. The
regular versions of original star tuck, the truncated star, and the
twist fold are used in Resch’s original works, while the curly star
is not.

Truncated Star The star shape can be truncated so that the
pivot vertex is replaced by a flatn-gon for ann-degree vertex,
and each valley fold is replaced by a triangle between two valley
folds, splitting the fold angle in halves. The amount of trun-
cation is an additional controllable parameter, which allows for

1Waterbombtuck is thus a generalization of waterbomb base used for origami
tessellation

FIGURE 4. Top: Insertion of a star tuck. Bottom: Vertex with odd
number of incident edgesn can be interpreted as the vertex with 2n
edges by the insertions of digons between the facets.

(a)

(c)

(b)

(d)

FIGURE 5. Example tessellations generated from regular planar
tilings. (a) Triangular pattern with regular 6-degree vertices. (b) (c)
(d) Triangular, quadrangular, and hexagonal pattern with the insertion
of digons.

increased freedom in the design space to flexibly fit to the desired
3D form in the succeeding numerical phase.

Curly Star By adding extra folds to the star tuck, we can have
a curly variation of the star tuck. The surface polygons are pulled
together by twisting the star to fit to a surface with an increased
curvature than the original star tucks. Here, the amount of twist
is an additional controllable parameter.

Twist Fold By flattening the pivot vertex of the curly star, we
can obtain a truncatedn-gonal bottom figure with connecting
triangles. This is a 3D interpretation of planar twist tessella-
tions [8, 9]. The amounts of truncation and twist are the addi-
tional controllable parameters.

SOLVING CONSTRAINTS

From the generated approximation of folding, a valid origami
surface, and thus, a developable mesh without intersection, is
numerically computed by solving nonlinear equations. The vari-
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(a) star (c) curly star (d) twist fold(b) truncated star

crease pattern
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(front)
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(back)

FIGURE 6. Variations of the tuck structures for a regular triangular mesh.

ables in this system are coordinates ofn verticesx1, . . . ,xn that
can be represented as a single 3nvectorX = (x1, . . . ,xn)

T, and
the equations are the developability conditions as in [7]. When
we apply the developability constraints directly, our generated
origami tessellations produce multiple facets intersecting each
other at their sharing vertices (vertex-adjacent facets). The
method proposed in [7] using the simple penalty function for
fold angles suffers from the instability at the singular configu-
ration where the facets are very thin. Also, the approach was
not capable of dealing with intersections between vertex-adjacent
but not edge-adjacent facets. Here, we introduce a novel robust
technique to avoid local intersections between facets based on
constructing angular constraints for edge-adjacent and vertex-
adjacent facets.

Developability Constraints

The isometric mapping of the entire polyhedral disk to a plane is
ensured by the angular condition of each interior vertex: for each
interior vertexv with nv incident facets given by

gv(X) = 2π −
nv−1

∑
i=0

θv,i = 0, (1)

whereθv,i is the sector angle of thei-th (modnv) facet incident
to v. This condition is a necessary but not sufficient condition
for having a one-to-one isometric mapping; thus, the develop-
ment of the mesh can overlap itself at the boundary. Although
boundary overlapping does not frequently occur in our gener-
ated pattern, we avoid the boundary collision using the following
sufficient condition, similar to the one used for the post process
of angle-based flattening [10]. Denote the loop ofn0 boundary
edges in counterclockwise,e1, . . . ,en0. For any portion of the
loop,ei ,ei+1, . . . ,ej in modulon0, the sum of the outer angles is

bi, j(X) =
j−1

∑
v=i

∠(ev,ev+1) =
j−1

∑
v=i

(
2π −

nv

∑
ℓ=1

θv,ℓ

)
+π ≥ 0. (2)

This conditionforbids any pair of edgesei andej on the bound-
ary to form an angle greater than 180◦ clockwise when the edges
appear in a counterclockwise order. In order to satisfy the condi-
tion, we extract pairs of edges that do not follow this constraint
from the candidate edges at the point of inflection of the bound-
ary curve. For such pairs we apply constraintsbi, j(X) = 0.
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Intersection Constraints

Pairs of facet that can intersect are classified into the following
three types.

1. Edge-adjacent facets, i.e., facets sharing an edge.

2. Vertex-adjacent (but not edge-adjacent) facets, i.e., facets
share a vertex but not an edge.

3. Non-adjacent facets, i.e., none of the above.

The global intersection of type 3 is not specific to origami, and
such an intersection is less frequent than the other two cases.
Such an intersection is comparatively easier to be observed and
avoided through the user manipulation by dragging the surface
using the mouse input. In this paper, we focus on the local inter-
sections types 1 and 2, which are specific to origami.

Edge-Adjacent Facets Avoiding the intersections between
edge-adjacent facets is straightforward. This can be done by
keeping the fold angle, i.e., the outer angle of the dihedral an-
gle, between adjacent facets in a valid range of[−π,π]. Since
the configuration described by vertex coordinates cannot distin-
guish folding anglesρ andρ +2π, and thus−π −δ andπ −δ ,
we use the mountain and valley assignment of fold lines to crop
the angles to(−π/2,3π/2] for valley folds and(−3π/2,π/2] for
mountain folds. We force the valley and mountain folds to have
cropped fold angle in[0,π] and[−π,0], respectively.

A straightforward representation of the aforementioned condi-
tion is to directly use the fold angle as the constraint equation
as in [7]: for any foldline with fold angleρ exceeding the limit
fold angleρlimit , ρi, j − ρlimit = 0. However, this can make the
calculation unstable sinceρ is undefined at degenerated config-
urations in which one of the facets is too thin to have a reliable
normal vector. In order to avoid such an instability, we modify
the constraint as

fp,q(X) = 2
(

sin
ρi, j

2
−sin

ρlimit

2

)
hphq = 0, (3)

wherehp and hq are therelative heights of trianglesp and q,
respectively, measured from the sharing base edgeei, j (Figure
7). This can be written as

fp,q =
2
(

sin
ρi, j
2 −sin ρlimit

2

)
cotθp,i cotθp, j cotθq,i cotθq, j

. (4)

Figure 8illustratesρ(x) and fp,q(x) when the axis projected tox
can freely move between fixed edges drawn as fixed points.
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θ
q,j

FIGURE 7. Pair of edge-adjacent facetsp andq.

ρ ρh
1

h
2

FIGURE 8. Left: Fold angleρ(x) of the vertex between two fixed
points. Note the singularity at the end points. Right: Modified angular
evaluationfp,q(x).

Vertex-Adjacent Facets The constraintsmentioned above
cannot deal with the local collision between facets sharing a ver-
tex if a vertex is shared by more than four facets (Figure 9 Left).
The intersection problem at a single vertex is essentially equiva-
lent to that of a 2D closed chain, e.g., an unfolding algorithm of a
2D chain can be applied in the unfolding of a single vertex [11].
An unfolding algorithm of a 2D chain uses a barrier function to
avoid self intersection [12]. Our approach is similarly based on
the energy-driven approach, however, we use a penalty function
instead of a barrier function that would make the solution unique
and forbid searching of the entire solution space; the forbidden
configuration includes an interesting boundary case in which a
foldline touches a facet. Our approach is to construct an appro-
priate penalty function whose value stays zero when the config-
uration is valid and continuously increases when a foldline sinks
into a facet. Note that the method we propose only applies to
interior vertices and provides only a necessary condition. The
limitation comes from that a penalty function temporarily allows
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FIGURE 9. Left: Local collision between vertex-adjacent facets.
Right: Mesh after the penalty function is applied to avoid the intersec-
tion.

Interior

Valley Fold (ρ>0) Detection Failed

Exterior

Mountain Fold (ρ<0)

FIGURE 10. Detection of invalid vertices.

for the intersection and there is no obvious way to unfold it if the
intersection is too far to be fixed.

First, the intersection of facets sharing a vertexv can be detected
by finding an “invalid foldline” as follows. We first cut a unit
sphere with the facet fan and call the portion of the sphere with
area smaller than 2π the “interior.” Without the loss of generality,
we assume that the front side of the surface is in this direction.
Since the vertex is developable, the interior portion stays within
a hemisphere and thus remains to be interior throughout the fold-
ing motion.

For each foldline, we derive another facet fan by removing the
two incident facets and capping the gap by a new triangular facet.
We can similarly construct the portion by intersecting the derived
facet fan with a unit sphere, which also stays within the hemi-
sphere. The foldline is detected as invalid when either (1) the
foldline has a positive fold angleρ > 0 (valley fold) and is lo-
cated in the interior of the derived facet fan, or (2) the foldline
has a negative fold angleρ < 0 (mountain fold) and is located
on the exterior of the derived facet fan (Figure 10). An edge is
detected to be interior of a facet fan if the sum of the view an-
gle ∑nv−1

i αo,i,i+1 of each facet around the edge equals 2π and
exterior if they sum up to 0. The view angle from an edge rep-
resented by a vectorvo to the facet spanning two vectorsvi and
vi+1, where the vectors are normalized, is calculated as follows

v
o

v
i

v
i+2

v
i−1

v
i+1

α
ο,i,i+1

FIGURE 11. View angleαo,i,i+1 and the vectors.

(Figure 11).

αo,i,i+1 = arctan
∥(vo×vi)× (vo×vi+1)∥
(vo×vi) · (vo×vi+1)

(5)

This per-edge method successfully detects the cases when the
configuration is close to valid, whereas two pairs of facets inter-
secting each other simultaneously could fail to be detected as an
invalid case using the method (Figure 10 Right).

The configuration can be modified using a penalty function for
each invalid foldline to pull back to a position on the closest
boundary. We form such a function using an angular measure-
ment similar to Equation 3 to represent the distance betweenvo
and the facet spanningvi andvi+1.

do,i,i+1 = (1+cosαo,i,i+1)∥vo×vi∥∥vo×vi+1∥
= cos∠(vi ,vi+1)−cos(∠(vo,vi)+∠(vo,vi+1)) (6)

The constraintsfor the total facet fan can be represented using
the harmonic mean of the distance functions.

fo(X) =
nv−1

∑nv−1
i

1
do,i,i+1

(7)

Figure 12illustrates an example of the resulting penalty function.

Numerical Solution

We solve the nonlinear constraints and penalty function given
by equationsg, b, and f in an iterative manner. The equations
are given as a vectorg(X) = 0 . We solve the geometric con-
straints based on the generalized Newton-Raphson method us-
ing the search direction of−C(X i)

+g(X i) for each step, where
C(X)+ is the Moore-Penrose generalized inverse of the Jacobian
matrix C(X). Since the constraints are the function of anglesθθθ
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FIGURE 12. Penalty function given from a star-like facet fan. Illus-
trated on a plane by the Gnomonic projection of the spherical surface.

andρρρ between edges and facets, this is calculated by

C(X) =
∂g(X)

∂X
=

∂g(θθθ ,ρρρ)
∂θθθ

∂θθθ
∂X

+
∂g(θθθ ,ρρρ)

∂ρρρ
∂ρρρ
∂X

. (8)

We use the conjugate gradient method for each step to calculate
the least norm search direction.

Fitting

The geometric constraints are generally less than the variables
and the system constructs a multi-dimensional solution space
within which we can search for the solutions that look attractive
and are desirable. This can be done in an interactive manner as
in [7], using the initial deformation mode∆X0 arbitrarily given
by the user through a 2D input device.

∆X =
[
I −C(X)+C(X)

]
∆X0 (9)

Here,∆X is the modified deformation mode projected to the con-
structed solution space.

In order to obtain a surface closest to the original polyhedral sur-
face, we can set the fitness function and use its gradient as the
initial deformation mode. An example fitness function is given
by the distance of vertices on the outer positions to that of the
original polyhedral surface. For each vertex of the upper facets
whose coordinate isx, we set the target positionxtarg by referring
to the initial positions of the generated surface. We set the fitness
function

d = ∑
v

(
(1−w)n+w(xv−xtarg

v )/
∥∥xv−xtarg

v

∥∥)T (xv−xtarg
v ),

(10)
wheren is the normal vector at the original vertex position and
0≤ w≤ 1 is the weight for the distance measured perpendicular
to the normal vector.

FIGURE 13. Example designs of bell shape, hyperbolic surface (an-
ticlastic), and spherical surface (synclastic) from star-tuck origami tes-
sellations.

DESIGN

Figures 13 and 14 show example designs of freeform origami
tessellations approximating double-curved surfaces in a halfway-
folded state, which are made possible for the first time with the
proposed method. The results demonstrate the flexibility in the
design of the origami tessellations.

There is a drawback that the optimization process does not guar-
antee the convergence to a valid solution; it fails to obtain a
valid configuration without intersection when the initial poly-
hedral surface is “far” from a developable surface.. Figure 15
shows an example that fails to yield a valid origami tessellation.
Here, the tuck structures are too large at the boundary, and the in-
tersections between facets are no longer avoidable. This implies
that the problem is not specific to our proposed method, but is
generally attributed to the fact that a non-developable surface is
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FIGURE 14. Blobby surface realized from a single developable sur-
face.

FIGURE 15. Spherical origami tessellation failing to avoid intersec-
tion

FIGURE 16. Spherical origami with cuts.

realized by virtually shrinking the surface with the cost of accu-
mulating the size of the tuck. Such an accumulated error can be
reduced by appropriately adding cuts to the initial polyhedron,
and thus by locating the position of the boundary of the paper
(Figures 16 and 17).

FABRICATION

The resulting origami tessellations can be physically fabricated
by first grooving or perforating a sheet of material along the
crease pattern generated as a vector data using 2-axis CNC ma-
chines such as a cutting plotter and laser cutter, and then folding
the sheet along the marked foldlines (Figure 18). When the ma-

FIGURE 17. Tessellated origami bunny using the initial cut of the
mesh.

terial does not allow for aπ folding, we can design the origami
tessellations by modifying the intersection avoidance condition
for edge-adjacent facets by using the limit ofπ −δ instead ofπ.

The developability condition does not generally ensure the ex-
istence of a continuous folding motion from a planar sheet to
a folded 3D form without the stretch of the material or the re-
location of the creases; such a folding mechanism without the
deformation of each facet is termed rigid origami. The resulting
origami tessellation forms a rigid origami with multiple degrees
of freedom when non-triangular facet is triangulated because the
number of degrees of freedom of generic triangular mesh homeo-
morphic to a disk is calculated asEo−3, whereEo is the number
of edges on the boundary of the mesh [13], whereas the configu-
ration space is potentially disconnected because of the local and
global collisions between facets, in which case, the folding from
a planar state to the 3D form does not exist.

We checked this continuity of folding usingRigid Origami Simu-
lator by unfolding the resulting 3D form to a planar sheet; some
resulting patterns were successfully unfolded to a planar sheet
without local and global collision (Figure 19), whereas other
patterns encountered a global collision of facets. Even though
we were not able to characterize the continuity of rigid origami
folding motion, the patterns from our method have far better
manufacturability than the ones from Origamizer method, which
is completely locked and cannot even fold infinitesimally in a
folded state. The results suggest that the method is potentially
applicable to the manufacturing of an arbitrary 3D form from a
hard metal sheet or panels.

CONCLUSION

We presented an approach for the design of freeform variations
of Resch-like origami tessellations from a given polyhedral sur-
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FIGURE 19. Continuous unfolding motion from a 3D form to a planar sheet.

FIGURE 18. Example folding of a perforated steel sheet.

face. We presented the concept of star tucks and the variational
tuck structures to be inserted between polygonal facets to con-
struct a variation of tessellated surfaces. Such a generated sur-
face is then optimized to make the surface developable and also
non-intersecting at the vertices. We showed a penalty function
for robustly calculating the intersections between vertex-adjacent
facets. The method results in novel designs of freeform origami
tessellations that neither Origamizer nor Freeform Origami could
achieve.
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