
1

Origamizing Polyhedral Surfaces
Tomohiro Tachi

Abstract—This paper presents the first practical method for “origamizing” or obtaining the folding pattern that folds a single sheet of
material into a given polyhedral surface without any cut. The basic idea is to tuck fold a planar paper to form a three-dimensional shape.
The main contribution is to solve the inverse problem; the input is an arbitrary polyhedral surface and the output is the folding pattern.
Our approach is to convert this problem into a problem of laying out the polygons of the surface on a planar paper by introducing the
concept of tucking molecules. We investigate the equality and inequality conditions required for constructing a valid crease pattern. We
propose an algorithm based on two-step mapping and edge splitting to solve these conditions. The two-step mapping precalculates
linear equalities and separates them from other conditions. This allows an interactive manipulation of the crease pattern in the system
implementation. We present the first system for designing three-dimensional origami, enabling a user can interactively design complex
spatial origami models that have not been realizable thus far.

Index Terms—Origami, origami design, developable surface, folding, computer-aided design.

✦

1 INTRODUCTION

ORIGAMI is an art of folding a single piece of paper
into a variety of shapes without cutting or stretching

it. Creating an origami with desired properties, particularly a
desired shape, is known asorigami design. Origami design
is a challenge faced not only by origami artists but also
by designers and engineers who apply origami to industrial
purposes. The objective of this research is toorigamize a
given polyhedral surface, defined in this paper as an origami
design to obtain a folding pattern that folds into a given three-
dimensional shape.

1.1 Developable Surfaces

A folded stateof origami is roughly defined as a topological
disk in three-dimensional space onto which a square can be
isometrically mapped with a one-to-one mapping such that any
portions of the surface do not intersect but are allowed to touch
each other. A precise mathematical description of origami is
derived by Demaine and O’Rourke [1].

In an engineering sense, this isometric mapping represents
the deformation of the surface of hard thin sheet materials such
as paper, plastic, and metal sheet. The surface obtained by
such a deformation is termed developable surface, which tra-
ditionally implies a smooth, i.e.,C1 continuous, developable
surface.

C1 developable surfaces have been used for architectural
and other industrial designs since they can be produced by
simply bending the surfaces of continuous sheet materials.
Methods to design a freeform surface by assembling devel-
opable or nearly developable surfaces have been proposed.
Mitani and Suzuki [2] and Massarwi et.al. [3] constructed an
arbitrary surface with triangle strips, each of which approx-
imates aC1 developable surface. Other methods have been

• Theauthor is with the Department of Architecture, the University of Tokyo,
Tokyo, Japan. E-mail: ttachi@siggraph.org

proposed to obtain nearly developable patches represented as
triangle meshes, either by segmenting the surface through
the fitting of the patches to cones, as proposed by Julius
[4], or by minimizing the Gauss area, as studied by Wang
[5]. Subag and Elber [6] approximated NURBS surfaces with
piecewiseC1 developable surfaces. A method with planar
quad mesh [7] successfully creates a discrete representation of
a C1 developable surface, and Pottmann et.al. [8] use planar
quad mesh to approximate a freeform surface with developable
panels.

On the other hand, an origami surface is aC0 developable
surface, which allows a finite number of creases. It is known
that creating folds or creases onto a single surface results in the
formation of a wide variety of forms such as curved folding
created by Huffman [9], periodic folding created by Resch
[10], [11], and various other contemporary origami sculptures.
In the 2000s, sheet metal designs have been developed that
apply curved folding, such as column covers by Lalvani [12]
and a car model by Epps [13]; these designs suggest a new
field of origami design for industrial purposes.

Thus far, several studies have been conducted to analyze or
simulate three-dimensional surfaces with folds. Huffman [14]
described creases on a developable surface using the Gauss
map and introduced a method to create a special case of
curved folding. Also there have been studies to computation-
ally represent folds between piecewise linear approximation
of developable surfaces. Kergosien et.al. [15] simulated the
creases created on a curved paper, and Kilian et.al. [16]
first succeeded in discretely representing a general case of
curved folding. Piecewise linear origami is defined as rigid
origami, whose local behavior around a vertex is investigated
by Belcastro and Hull [17]. The rigid origami simulator [18]
is an interactive system that animates piecewise linear origami
in three-dimensional space. Another representation of origami
is to use a discrete shell simulation, as used by Burgoon et.al.
[19], which takes the elasticity of paper into account.

Despite conducting these analytical studies and developing
simulational methods, no practical method for designing an

2

origami surface has been developed. The objective of this
study is to realize a freeform shape out of a single devel-
opable surface with creases. Although the key application
of the proposed method is to create a new artistic origami,
this method is also expected to be applicable for industrial
purposes in the future. Prospective applications include the
design of architectural elements such as facades, roofs, furni-
ture, and light fixtures, which require both designability and
manufacturability

1.2 Flat Folding

Flat-foldable origami is a special type of origami where every
point on a folded state lies on a plane. In the case of flat-
foldable origami, acrease pattern, i.e., the inverse image
of foldlines, is described as a simple straight-edged two-
dimensional graph drawn on a plane, each line segment of
which represents a mountain or a valley. The crease pattern
represents the points on which the points on a paper are
mapped; however, if the points are folded in a manner in
which they overlap, determining the overlapping ordering of
the paper is not a trivial problem. It has been proved by Bern
and Hayes [20] that determining a valid configuration of a
folded state only from a crease pattern is an NP-complete
problem with worst-case complexity.

However, some general design problems are solved by
dividing a global crease pattern into fragments, each of which
is bounded by a polygonal region. The crease pattern of such
a fragment is designed to have a characteristic such that
desired points and lines are folded to overlap each other.
In an origami design, such a fragment is termedmolecule,
coined by Meguro [21]. For example, a molecule that folds
the perimeter of a given polygon onto a common line is
applied for the fold and cut problem [22]. A further extended
molecule termeduniversal moleculeprovides the flexibility
of deciding which parts of the perimeter must overlap; the
correspondence between the parts is represented with a circle
packing pattern [23]. The concept of universal molecule is
applied for designing a tree-shaped origami [23] (Section
1.3.1), solving the fold-and-cut problem [24], and flat-folding
polyhedra [25].

In this paper, another type of molecule termedtucking
moleculeis used. Tucking molecules are partially flat-foldable
structures that assemble corresponding edges of polygons on
a three-dimensional surface.

1.3 Previous Origami Design Methods

1.3.1 Tree Method
The tree methodhas been the only existing practical compu-
tational origami design method for realizing desired shapes.
Its basic concept was first introduced in [21], which states
that an arbitrary tree-shaped origami figure can be constructed
from a pattern of circles and rivers packed into a square.
Lang [23] described the theory of the tree method with some
proofs and proposed a computational algorithm. The proposed
method generates a crease pattern that folds into abase,
i.e., a folded shape whose projection to a plane is exactly
the same as the given tree shape with arbitrary edge lengths

and connectivity. The algorithm is implemented as an origami
design software TreeMaker [26]. The tree method enables the
creation of origami with vast complexities; however, it is only
possible to control one-dimensional properties, i.e., the lengths
of flaps. An intuitive process wherein an experienced origami
artist performs the “shaping” is essential to transform such an
origami base into the final shape. In addition, it is virtually
impossible even for experienced origami artists to create
a desired three-dimensional shape using this approach. In
contrast, our method can precisely represent three-dimensional
shapes without additional shaping.

1.3.2 Folding a Polyhedron

Demaine et al. [27] proved that any polyhedron can be
created by folding a square piece of paper. The basic idea
of the algorithm provided in the proof is to fold the square
sheet of paper into a thin strip, and then, wrap the strip
around the desired polyhedron. It is practically impossible to
design any actual model using this approach, because of the
inefficiency arising from the algorithm, which relies on an
extremely narrow strip. In addition, the strip does not stably
sustain the three-dimensional shape if it is constructed by the
abovementioned approach. Section 9.2 discusses the efficiency
and structural stiffness of the folded model.

Tanaka [28] proposed another technique based on folding
a paper into the development of the given polyhedron. This
technique is also not practical for the same reasons — the
generated crease pattern is inefficient, and the folded shape is
unstable, because the algorithm begins with the formation of
a complex tree-shaped polygon.

1.3.3 Tucking

It is a well-known fact that a flat sheet of paper can be curved
by tuck folding. Some origami artists empirically apply the
tuck-folding technique to shape a three-dimensional surface.
Based on the idea of tuck-folding, the author has previ-
ously proposed a technique for designing a three-dimensional
origami surface by tucking and hiding the unwanted areas
of a paper [29]. The work proposes the concept of tucking
molecules, i.e., fragments of crease pattern specially designed
for tucking. However, no algorithm or system has been devel-
oped, and the entire design process relies on trial and error
using a conventional paper craft software [30] and a vector
drawing software. It sometimes takes several weeks to create a
crease pattern for realizing a three-dimensional origami model
using this technique.

1.4 Contributions

In this study, the first practical method and the system for
designing a three-dimensional origami model have been devel-
oped. Although the method does not guarantee the origamiza-
tion of an arbitrary polyhedron, it is practical enough to
enable elaborate three-dimensional origami models (Figure 1).
Following are the main contributions of this study.

3

1.4.1 Polygons and Tucking Molecules

Our technique is developed on the basis of the concept of
tucking molecules proposed in the author’s previous work [29].
We additionally formalize the conditions and parameterize the
configuration. This parameterization translates the problem of
designing three-dimensional origami into a problem of laying
out polygons on a plane. In order to implement this technique,
sufficient conditions for obtaining a valid crease pattern are
investigated. It is shown that the conditions are represented
by non-linear equations and inequalities.

1.4.2 Mapping and Edge Splitting

In this study, a novel algorithm has been developed to solve
the above-mentioned conditions. The algorithm is based on
two-step mapping and edge splitting.

The first step of mapping fixes the rotations of the poly-
gons. This converts non-linear equations into linear equations,
which are then precalculated. Under these precalculated linear
equations, the remaining inequalities are solved by an iterative
method. The precalculation enables a fast computation for each
iterative step, which also allows a real-time human interaction.

Edge splitting is a recursively applicable procedure that lo-
cally changes the crease pattern without changing the original
surface. This procedure decreases the number of conditions to
be solved. Mapping is performed under these relaxed condi-
tions, following which edge splitting is performed recursively
on the given pattern.

1.4.3 Interactive Design System

Our algorithm was implemented as an interactive system for
origami design. The system automatically generates a crease
pattern from an input polyhedral surface while allowing users
to edit the topology of the three-dimensional mesh and to
modify the resulting crease pattern. These tools are designed
to be consistent with the required disk topology and the
conditions for origamization.

2 METHOD OVERVIEW

2.1 Description of the Problem

In this paper, the origamization of a polyhedral surface is
defined as, obtaining a crease pattern of origami that constructs
a polyhedral surface with hidden tucks, instead of constructing
only the exact surface.

Let S andV (⊃ S) denote a set of all points on the given
polyhedral surface and the solid enclosed byS, respectively.
Then, the goal is to create the crease pattern on a planar convex
polygon P so that the folded stateF (P) is contained inV
andS is contained inF (P). S can be an orientable manifold
with a boundary that does not completely enclose a volume,
in which caseV is given to indicate a finite region hidden
behindS.

Note that the planar convex polygonP can be obviously
folded from a square containingP by folding and hiding the
unnecessary area behind. The minimum size of such a square
paper is used when measuring the efficiency of the model
(Section 9.2.3).

Fig. 1. Top: Desired polyhedral model (Stanford Bunny)
and the created crease pattern. Bottom: World’s first
origami Stanford Bunny.

Convex Polygon
P

Folded State
F(P)

V

S

∪
∩

F

Fig. 2. Origamization is achieved by creating a crease
pattern representing F (P) such that F (P) ⊂ V and
F (P) ⊃ S. The convex polygon P can be further folded
from a square.

2.2 Procedure

2.2.1 Cutting to a Disk
The first step toward origamizing a surface not homeomor-
phic to a disk is to construct a polygonal schema, which
is a polyhedral surface homeomorphic to a disk that covers
the original surface. A polygonal schema is represented by
cutlines along the edges of the surface which correspond to
the boundary of the disk. Several algorithms are proposed to
obtain “nice” polygonal schemata [31], [32], [33], and in the
system proposed, a combination of flooding and modification
by the user is adopted, as discussed later in Section 8.1.

2.2.2 Mapping Surface Polygons
The next major step is to separate individual polygons of the
given polyhedral mesh and map each of them congruently on
a plane. The problem here is to obtain a folding that folds the
mapped polygons properly back toS and the gap between the
polygons toV \S. The shape of the gap, defined by the layout

4

of the polygons, determines whether such a folding is possible
or not, the conditions on which are investigated in Section 4.
The layout is determined by solving these conditions as shown
in Section 6.

2.2.3 Generating a Crease Pattern
In order to tuck fold the gap to make it completely hidden
behind the surface, the gap is subdivided into simple polygons
with crease patterns termedtucking molecules, as described in
Section 3. The crease pattern on a tucking molecule is created
such that it “glues” separated vertices or a pair of edges by
folding itself. The combination of these molecules enables a
folding pattern that hides the unwanted gaps and makes the
separated polygons connected again (Figure 3).

Fig. 3. Folding motion of the crease pattern. The tuck
is hidden and the surface polygons are glued together
as the corresponding vertices are folded to the same
position.

3 TUCKING MOLECULES

Two types of tucking molecules are used in this study. One
type is theedge-tucking molecule, which is a quadrilateral with
a crease pattern inserted between a pair of edges correspond-
ing to a single edge onS. The second type is thevertex-
tucking molecule, which is anN -gon with a crease pattern
surrounded byN edge-tucking molecules, whoseN vertices
correspond to a single vertex onS. Therefore, a planar region
is tessellated into the original polygons of the surface, edge-
tucking molecules, and vertex-tucking molecules (Figure 4).
This derived tessellation is termedmolecule mesh.

3.1 Edge-Tucking Molecule
Assume that surface polygonsF (P0) and F (P1) share the
same segmentAB on S, as shown in Figure 5 Left. Let
A0B0 and A1B1 denote the edges that correspond toAB.
Then, the edge-tucking molecule corresponds to quadrilateral
A0B0B1A1. In general, the crease pattern can be defined
if and only if the quadrilateral is a simple polygon with a
positive signed area, i.e., without flipping, and the condition
min(A0B1,A1B0) ≥ AB is satisfied.

In addition, the proposed algorithm assumes that the edge-
tucking molecules are symmetric, i.e., each quadrilateral is an
isosceles trapezoid, whereA0A1 is parallel toB0B1 (Figure
5 Right). In this case, the crease pattern of an edge-tucking
molecule is simply a single valley crease (+π) on the axis of
reflection in which the edges are reflected onto each other.

Vertex-Tucking Molecule Edge-Tucking Molecule Surface Polygon

(a) (b) (c)

Fig. 4. (a) Polyhedral surface S. (b) Tessellation derived
from S, constructed by inserting tucking molecules be-
tween mapped surface polygons. (c) Gap is tuck-folded
to be completely hidden behind the surface, thereby the
surface polygons are “glued” together again.

A1

B1

A0

B0
P0

P1

Symmetric

A1 B1

A0

B0

P1

P0

General

Edge-Tucking Molecule

Surface Polygon

Valley Crease

Mountain Crease

F(P1)

F(P0)A

B

Fig. 5. Edge-tucking molecules. Segments A0B0 and
A1B1 are folded onto the same edge AB.

3.2 Vertex-Tucking Molecule

A vertex-tucking molecule corresponds to anN -gon that joins
N pieces of the edge-tucking molecules sharing a single
vertex. The surrounding vertices of a vertex-tucking molecule
are folded onto a single vertex by folding along its crease
pattern.

Such a crease pattern can be generated for a given shape
of molecule by the Voronoi folding, i.e., folding along the
Voronoi diagram. The concept of Voronoi folding is based
upon the idea of the circumcentric folding of a triangle, i.e.,
folding the triangle along the perpendicular bisectors of its
sides and folding three vertices onto a single point. Following
are the procedure (Figure 6).

1) Draw the Voronoi diagram with valley creases (+π)
whose generating points are the vertices of the molecule.

2) Connect each Voronoi vertex and adjacent generating
points with mountain creases (the fold angles are deter-
mined by the tuck proxy, defined later in Section 4.3).

3) Add crimp folds that makes the folded state fit the
curvature of the surface polygons (discussed later in
Section 4.3).

4 CONDITIONS

The sufficient conditions for achieving origamization are de-
scribed by equalities and inequalities on the configuration of
the mapped surface polygons. The conditions can be stated as
follows.

1) All surface polygons are isometrically mapped, and
all pairs of mapped edges are symmetrically aligned
(Equality conditions: Section 4.1).

5

A0
A1

A2

A3
A4

P0

P1

P2

P3
P4

Fig. 6. Crease pattern for creating a vertex-tucking
molecule is generated using the Voronoi diagram.

2) The mapped polygons and tucking molecules tessellate
a convex polygon, and the molecule mesh yields a valid
crease pattern (2D inequality conditions : Section 4.2).

3) The folded state follows the curvature ofS and is
contained inV (3D inequality conditions: Section 4.3).

4.1 Equality Conditions

All mapped surface polygons are isometric and the edge-
tucking molecules are symmetric. The configuration of the
molecule mesh can be represented by distances and angles
of the edge-tucking molecules.

For a pair of adjacent verticesi, j, angleθ(i, j) is defined
as the angle between a pair of edges corresponding to edgeij,
whose sign is assigned according to the orientation of the rota-
tion about vertexi. The widthw(i, j) is defined as the signed
length of the edge on the boundary ofVTM(i) (vertex-tucking
molecule corresponding toi) shared byETM(i, j) (edge-
tucking molecule corresponding toij), whose negative value
indicates that the molecule is crossed or flipped. Since edge-
tucking molecules are represented by isosceles trapezoids,
θ(j, i) = −θ(i, j) andw(j, i) = w(i, j)+2ℓ(i, j) sin(1

2θ(i, j)),
whereℓ(i, j) is the length of edgeij (Figure 7).

i j

w(i,j) w(j,i)

ℓ(i,j) θ(i,j)

Fig. 7. Edge-tucking molecule is represented in terms of
two parameters: w(i, j) and θ(i, j).

We assume that an extra edge-tucking molecule termed
boundary moleculeis connected to each vertex-tucking
molecule on the boundary of the surface. Then, all vertex-
tucking molecules are surrounded by polygons and molecules.
Similarly, variables of a boundary molecule adjacent to
VTM(i) are denoted byθ(i, o) andw(i, o), where the nominal
vertexo represents the boundary.

The variables are constrained at each vertex surrounded by
facets. Letjn (n = 0, · · · , N − 1, whereN is the valency of
vertex i) denote the vertex adjacent to vertexi or boundaryo
connected counterclockwise in this ordering, and letα(i, jn)
denote the sector angle onS betweenijn−1(modN) and ijn.

Then, equality conditions around vertexi are given as follows.

N−1∑
n=0

θ(i, jn) = 2π −
N−1∑
n=0

α(i, jn) (1)

and
N−1∑
n=0

w(i, jn)
[
cos (

∑n
m=1 Θm)

sin (
∑n

m=1 Θm)

]
=

[
0
0

]
, (2)

whereΘm is the external angle between the adjacent edges of
a vertex-tucking molecule (Figure 8), given by

Θm =
1
2
θ(i, jm−1) + α(i, jm) +

1
2
θ(i, jm) (3)

The right-hand side of equation (1) is the Gauss area of
the original surface at the vertex, which is modified to
be zero by adding or subtracting extra angles using edge-
tucking molecules. Equation (2) ensures that the vertex-
tucking molecule forms a closed polygon.

w(i,j
0
)

α(i,j
0
)

θ(i,j
0
)

Θ1Θ2

α(i,j
1
)

θ(i,j1)

θ(i,j
N-1)

α(i,j
1
)

θ(i,j2)

θ(i,j
2
)

θ(i,j2)

α(i,j2)
θ(i,j00jj)

w(i,j0i,ji,j)

(a) (b)

boundary molecule

Fig. 8. (a) Vertex-tucking molecule surrounded by poly-
gons and edge-tucking molecules. (b) Vertex-tucking
molecule on the boundary.

4.2 2D Inequality Conditions

In order to ensure a valid crease pattern, it is necessary that
a convex paper can be tessellated into surface polygons and
tucking molecules (Section 4.2.1), and a valid crease pattern
can be constructed from the molecule mesh (Section 4.2.2).

4.2.1 Convex Paper and Non-overlapping Conditions
The condition that satisfies the convexity of paper is given as
follows. For every boundary moleculeETM(i, o),

θ(i, o) ≥ π (4)

w(i, o) ≥ 0 (5)

Because the boundary of the molecule mesh is convex, no
overlapping occurs without the local intersection or flipping of
the tessellating elements, i.e., surface polygons, edge-tucking
molecules, and vertex-tucking molecules. Thus the necessary
and sufficient condition for obtaining a valid molecule mesh
without overlapping is that every edge-tucking and vertex-
tucking molecule is a simple polygon. Following conditions
are used. For everyETM(i, j),

−π < θ(i, j) < π (6)

min(w(i, j), w(j, i)) ≥ 0, (7)

6

andfor every vertex of everyVTM(i),

0 ≤ Θm < π (8)

Here, we are using the sufficient condition for vertex-tucking
molecules; conditions (7) and (8) keep every vertex-tucking
molecule convex.

4.2.2 Crease Pattern Validity
It must be ensured that (i) a crease pattern is properly gen-
erated for each tucking molecule and that (ii) the patterns of
adjacent molecules do not intersect, in order to obtain a valid
crease pattern. It is obvious that every isosceles-trapezoidal
edge-tucking molecule yields a valid crease pattern, i.e., a
single extendable segment on the axis of reflection. Thus we
will focus on the conditions (i) and (ii) for vertex-tucking
molecules.

Condition (i) is satisfied for any vertex-tucking molecule
that satisfies convexity conditions (7) and (8). This is because
the convexity of the vertex-tucking molecule ensures that the
perpendicular bisectors of all the sides of the molecule lie on
the Voronoi edges.

Condition (ii) is satisfied by avoiding an intersection be-
tween the crease patterns of two adjacent vertex-tucking
molecules (Figure 9). This type of intersection inside the edge-

Fig. 9. Intersection of the crease pattern.

tucking molecule occurs when a Voronoi vertex of the adjacent
vertex-tucking molecule traverses a certain distance across the
boundary of the edge-tucking molecule. This distance is repre-
sented by the opposite angle of the Delaunay triangle incident
to the concerned boundary (Figure 10). A sufficient condition
for ETM(i, j) is expressed as the following inequality of this
angle denoted byϕ(i, j).

ϕ(i, j) ≤ γ(i, j) + 0.5π, (9)

whereγ(i, j) is the angle between the border segment and the
diagonal ofETM(i, j).

γ(i, j) = γ(j, i) = arctan
2ℓ(i, j) cos 1

2θ(i, j)
w(i, j) + w(j, i)

4.3 3D Inequality Conditions

It must be ensured that the folded shape finally follows the
original surfaceS, and every part of the folded shape is
contained in the solidV (Figure 2). The 3D conditions are
defined as follows.

1) The folded tuck does not intersect and is contained in
V .

φ(i,j)

θ(i,j)

w(i,j) w(j,i)

ℓ(i,j)

γ(i,j)

Fig. 10. Sufficient condition for avoiding the intersection
of crease patterns is represented as an inequality using
ϕ(i, j) and γ(i, j).

2) The folded tuck forms the curvature ofS.
We propose the idea of “tuck proxy” (Section 4.3.1) that trans-
lates the former condition into the inequalities between width
and depth (Section 4.3.3) and the latter into the inequalities
between angles (Section 4.3.2).

4.3.1 Tuck Proxy
Instead of directly estimating all the degrees of freedom
in the three-dimensional configuration of a folded tuck, we
assume that the folded tuck is contained intuck proxy, i.e., the
precalculated shape of the tuck, which is a subset ofV , thereby
deriving the sufficient conditions. Tuck proxy is defined as
the union of connected triangle strips generated by inwardly
extruding the edges of the surface (Figure 11 (a)).

Tuck proxy is generated in the following manner. First, we
define the direction of eachjoint axis, i.e., the axis to which
the triangle strips are connected at their terminal segments,
by shooting a ray inward from each vertex. Subsequently, the
ray is trimmed by an inward offset of the surface, so that the
generated tuck proxy does not intersect itself. We connect each
pair of the joint axes generated from a pair of adjacent vertices
with a triangle strip. Then, we obtain a valid tuck proxy inside
the volume (Figure11 (b)).

Tuck Proxy
Folded Tuck

(a) (b)

Fig. 11. (a) Folded tuck is assumed to be contained in
the tuck proxy, which is an inward extrusion of the edges
on the surface. (b) Surface polygons (left) and generated
tuck proxy free of intersection (right).

4.3.2 Tuck Angle Conditions
As a consequence of 2D conditions, a vertex-tucking molecule
can be folded such that the vertex and surrounding edges are
connected (Figure 12 (a)). In order to ensure that the folded
edge exactly follows the edge onS, the folded tuck is first

7

crimp-foldedto enable the terminal segments of the strips to
lie along the joint axis of the tuck proxy (Figure 12 (b)).
Subsequently, thetuck angle, defined as the angle between
the joint axis and the edge, is further adjusted by introducing
an additional crimp fold. The addition of crimp fold reduces
the tuck angle, but cannot increase it. Therefore, the conditions
required to fit the edgee(i, j) accurately on the original surface
is expressed as the following inequality between the potential
tuck angle along the folded paperτ(i, j) and the desired tuck
angle along the tuck proxyτ ′(i, j) (Figure 12).

τ(i, j) ≥ τ ′(i, j)

τ(i, j) can be expressed in terms ofθ(i, j), andϕ(i, j), and
the inequality can be represented as follows:

ϕ(i, j) − 1
2
θ(i, j) ≤ π − τ ′(i, j) (10)

τ(i,j) τ(i,j)

(a) (b) (c)

τ'(i,j)

τ(i,j)

φ(i,j)

τ(i,j) τ'(i,j)

Fig. 12. Adjusting the tuck angle with crimp folds.

4.3.3 Tuck Width Conditions

The folded edge-tucking molecules and vertex-tucking
molecules must be contained in the tuck proxy. This results
in the formation of two inequalities for each vertex.

The width of the edge-tucking molecule is limited by the
depth of the tuck proxy. This condition is described by the
inequality between the length of the joint axisd′(i) and the
length of the crease on the edge-tucking molecule to be folded
onto the axisdedge(i, j) (Figure 13).

dedge(i, j) ≤ d′(i),

which can be rewritten as

w(i, j) ≤ 2 sin(τ ′(i, j) − 1
2
α(i, j))d′(i). (11)

The depth of the vertex-tucking molecule is also limited.
Depthdvert(i) of VTM(i) is defined as the maximum distance
from vertexi to a point on the folded vertex-tucking molecule
projected to the joint axis, which is also limited byd′(i).

dvert(i) ≤ d′(i) (12)

However, the latter condition (12) is reduced to the former
one (11) by introducing asink fold procedure. Sink fold is a
common folding technique that reflects a part of the folded
state about a plane. Here, we apply an open sink, which is
a sink fold where all the mountain and valley assignments
of the creases on the plane of reflection are the same, about
a plane perpendicular to the joint axis. This maintains the
developability of the surface and the flexibility of the folded
shape, that is, edge-tucking molecules can be rotated along the
joint axis after the sink fold.

Assume that everyETM(i, j) adjacent toVTM(i) satis-
fies inequality (11); then,VTM(i) is sink-folded at depth
max (dedge(i, j)) (Figure 13). This assumption setsdvert(i) =
max (dedge(i, j)), resulting in satisfying condition (12).

τ'(i,j)

d(i,j)

w(i,j)

τ'(i,j) d(i,j)
d'(i)max(d(i,j))

Fig. 13. If any ETM(i, j) adjacent to VTM(i) satisfies
condition (11), the depth of the VTM(i) can be adjusted
with a sink fold.

5 PREPROCESS

5.1 Additional Edges

In order to avoid overconstraints by convex paper conditions,
an extra edge-tucking molecule, a vertex-tucking molecule,
and a digon are added to each edge on the boundary (Figure
14).

Fig. 14. Adding molecules to the boundary.

5.2 Triangulation

All concave polygons are triangulated, because concave poly-
gons do not satisfy the following necessary conditions for (10)
at the concave vertex betweenETM(i, j0) andETM(i, j1).

τ ′(i, j0) + τ ′(i, j1) < 2π − α(i, j1) (13)

max(τ ′(i, j0), τ ′(i, j1)) < π (14)

8

Triangulation of polygons also helps solving the conditions
for origamiziation by inserting flexible edge-tucking molecules
between facets. For this reason, other convex polygons are also
triangulated before mapping. However, the mapping algorithm
itself can be applied to polyhedra with quadrilaterals, which
was tested to yield valid results in practice (Section 9).

6 MAPPING

6.1 Variables and Constraints

Let Nvert and Nedge denote the number of vertex-tucking
molecules and the number of edge-tucking molecules plus
boundary molecules, respectively. The configuration of the
molecule mesh is represented by twoNedge-vectors θ and
w, whosen-th elements areθ(i, j) andmin(w(i, j), w(j, i)),
respectively, whereETM(i, j) is assigned a numbern.

These2Nedge variables are constrained by3Nvert equalities
represented by (1) and (2). This constructs an underdetermined
system, within which the other inequalities are solved. The
degree of freedom of this system is calculated asNedge−
3, becauseNvert = 1

3Nedge + 1 when all the polygons are
triangulated and boundary edges are added.

The actual mapping algorithm is performed in the following
two steps; (i) rotations of the polygons, represented byθ, are
determined and (ii) translations of the polygons, represented
by w, are calculated.

6.2 Rotation

In the rotational phase, we obtainθ that satisfies linear
equation (1) and linear inequalities (4), (6), and (8).

For each vertex,θ is constrained by equation (1), which can
be represented by the following linear equation.

Cθθ = g, (15)

whereCθ is an Nvert × Nedge matrix whosem-th row corre-
sponds to equation (1) for them-th vertex, andg is theNvert-
vector whose element represents the Gauss area at each vertex.
This is an underdetermined system havingNedge− Nvert =
2
3Nedge− 1 degrees of freedom. The solution space is given
as,

θ = C+
θ g + (INedge− C+

θ Cθ)θ0, (16)

where Cθ
+ = CT

θ (CθCT
θ)−1 is the pseudo-inverse ofCθ,

and θ0 is an arbitrary configuration. Within this constrained
space, inequalities represented by (4), (6), and (8) are solved.

We solve the inequalities under the constraints by iteratively
updating θ0 and projecting it to the constrained space.θ0

is updated according to the gradient of the penalty function
Eθ defined as the sum of squares of the errors from linear
inequalities (4), (6), and (8). Due to the convexity of these
conditions, the calculation always converges to the global
minimum. Additionally, although not proved, it is observed
in every tested model, that the global minimum is0, i.e., all
the conditions are satisfied.

6.3 Translation

In the next translational step, we obtain the configurationw
that satisfies equation (2) and inequalities (5), (7), and (19),
where (19) (discussed in Section 7.2) is a sufficient condition
for (9), (10), and (11).

Since the rotations of the surface polygons are fixed, i.e.,
θ(i, j) is constant, equation (2) is a linear equation. The
constraints for the entire model can be represented as,

Cww = b, (17)

whereCw is a2Nvert×Nedgematrix whose2m-th and(2m−
1)-th rows correspond to equation (1), for them-th vertex.
Equation (17) also forms an underdetermined system having
Nedge− 2Nvert = 1

3Nedge− 2 degrees of freedom. The solution
space is calculated as,

w = C+
wb + (INedge− C+

wCw)w0, (18)

where C+
w = CT

w(CwCT
w)−1 is the pseudo-inverse ofCw,

andw0 is an arbitrary value.
Similarly to the rotational phase, we solve the inequalities

under the abovementioned constraints by iteratively updating
w0 and projecting it to the constrained space. The projection
is performed inO(N2

edge) using the precalculated LU factor-
ization of matrixCwCT

w.
w0 is updated according to the gradient of the penalty

function calculated from inequalities (5), (7), and (19). We
set the penalty function as a linear combination of the sum
of squares of the errors and the external work from the user
input. The penalty function is expressed as,

Ew = c0E(5,7) + c1E(19) + c2 |∆w|2 ,

where∆w is a change in widths provided by the user input,
and E(5,7) and E(19) represent the sum of squares of the
errors calculated from the inequalities (5) and (7), and (19),
respectively.c0, c1, or c2 can attain any constant positive value.
To eliminate scale dependency,c0 : c1 : c2 = 1 : ℓ2ave : 1 is
chosen, whereℓave is the average length of the edges of the
polyhedron.

The combination of iterative update in the configuration and
projection to the constraint space enables a system that allows
a user to edit the crease pattern interactively while satisfying
the conditions (2), (5), (7), and (19).

6.4 Existence of the Solution

As linear inequalities (5) and (7) are dominant in the trans-
lational step, we did not experience any problem in the
convergence to the global minimum. However, the global
minimum is not always the valid solution. In general, the
penalty function in the translational phase does not ensure the
existence of the solution.

Here, we focus on the dominant conditions (5) and (7) for
the existence of the solution; they are represented aswn ≥ 0,
for any n. There exists a solution that satisfies this condition,
if there exists any solution of the homogeneous equation
Cww = 0 such thatwn > 0 for any n. The homogeneous
solution corresponds to the graph derived by the molecule

9

mesh with infinitely small surface polygons. If any of the
elements ofw is not positive, the graph is crossed or reversed.

6.5 Remapping

Our mapping algorithm discards the degrees of freedom when
fixing the rotations of the polygons, which is the main
cause of the non-existence of the solution. If there exists
no solution in the translational step, the initial angles must
be modified by recalculating the rotation in order to reduce
the penaltyE(5,7). The initial angles are modified according
to the following steps (Figure 15): (i) A valid graph free
of intersections is determined by ignoring the constraints.
Such a graph is obtained by a robust parameterization method
such as barycentric embedding [34]. (ii) Then, the increase
∆Θ in the angle between the adjacent edges of the graph is
measured. (iii) The increase in the angles of the edge-tucking
molecules∆θ is determined from∆Θ by solving equation (3),
in a least square sense. (iv) Finally, we recalculate equation
(16) using these modified angles as the initial configuration
θ0. The overall process is performed iteratively until the
system achieves a valid configuration. This iteration may not
converge to a solution, in which case the surface must be
topologically modified (normally, by adding cuts) by user
interaction (Section 8.1). Algorithm 1 describes the mapping
and remapping processes.

(a) (b) (c)

Fig. 15. Example of remapping. (a) Homogeneous solu-
tion. (b) Barycentric embedding. (c) Modified valid graph.

7 EDGE SPLITTING

7.1 Splitting

We introduce the concept ofedge splittingfor solving condi-
tions represented by inequalities (9), (10), and (11). An edge-
tucking molecule can split into two edge-tucking molecules
with one digon between them without changing the original
polygons of the surface. This technique is performed locally,
i.e., without changing the location of the other part of the
molecule mesh (Figure 16). The digon is inserted to divide
the sector angle between the pair of edges of the original

Algorithm 1 Mapping: Calculateθ andw from a preprocessed
meshM

updateCθ andg from M
LU factorizeCθCT

θ (precalculation ofC+
θ)

θ ← 0
loop

θ ← C+
θ g +

(
INedge− C+

θ Cθ

)
θ

while conditions (4) (6) (8) NOT satisfieddo
calculateEθ and∇Eθ from conditions (4) (6) (8)
∇Eθ ← (INedge− C+

θ Cθ)∇Eθ

calculate step sizeα by line search
θ ← θ − α∇Eθ

end while
updateCw andb from θ
LU factorizeCwCT

w (precalculation ofC+
w)

w ← C+
wb

repeat
if conditions (5) (7) (19) satisfiedthen

end
else

calculateEw and∇Ew from conditions (5) (7) (19)
∇Ew ← (INedge− C+

wCw)∇Ew

calculate step sizeα by line search
w ← w − α∇Ew

end if
until |α∇Ew| is sufficiently small
while conditions (5) NOT satisfieddo

calculateEw and∇Ew from conditions (5)
∇Ew ← (INedge− C+

wCw)∇Ew

calculate step sizeα by line search
w ← w − α∇Ew

end while
generate barycentric graph using the convex boundary.
calculate∆Θtarget from the graph

set∆θ to minimize

∣∣∣∣∆Θtarget−
∂Θ
∂θ

∆θ

∣∣∣∣2
θ ← θ + ∆θ

end loop

edge-tuckingmolecule. The width of the derived edge-tucking
molecule with angleθdiv is expressed as

wdiv =
sin(θdiv/2)
sin(θ/2)

w,

where θ and w denote the angle and width of the original
edge-tucking molecule, respectively. Therefore, edge splitting
is performed to subdivide edge-tucking molecules into suffi-
ciently narrow edge-tucking molecules (Figure 16(c)), which
satisfy the crease pattern intersection (9) and width conditions
(11).

7.2 Relaxed Conditions

For each edge-tucking molecule, we obtain a pair of arcs on
which the end points of an added digon is located. Assume
that we obtain the configuration of the original molecule mesh
such that the arcs do not intersect, and each arc is finitely

10

(a) (b) (c)

Added Digon

θ

θdiv

w wdiv

Fig. 16. Edge splitting.

separated from the other arcs, excluding any pair of adjacent
arcs sharing a vertex (Figure 17(a)).

The edge-tucking molecules can be subdivided such that any
corner vertex of the original vertex-tucking molecule belongs
to a single Delaunay triangle. Assume that conditions (13)
and (14) are satisfied; then, the shape of the corner Delaunay
triangle can be flexibly changed such thatτdiv(i, j0) and
τdiv(i, j1) satisfy condition (10), by controllingwdiv(i, j0) and
wdiv(i, j1) (Figure 17(b)). Any of other Delaunay triangles is
constructed by connecting two adjacent vertices on an arc and
a point on another arc. In the case of such a triangle,ϕdiv(i, j)
can be set to a sufficiently small value by subdividing the
edge-tucking molecules. Therefore, the tuck angle condition
(10) can be satisfied if and only if the tuck proxy satisfies
conditions (13) and (14).

(a) (b)

τdiv(i,j1)

τdiv(i,j0)

Fig. 17. (a) Configuration of the molecule mesh in which
no arcs intersect. (b) Delaunay triangle at the corner
can be transformed by controlling the width of the edge-
tucking molecules.

Therefore, edge splitting relaxes conditions (9), (10), and
(11), and replaces them with a sufficient condition that every
arc does not intersect. The following sufficient condition is
used.

min(β0(i, j), β1(i, j)) ≥ −1
2
θ(i, j), (19)

where β0(i, j) and β1(i, j) denote the base angles of the
Delaunay triangle whose base segment is located between
VTM(i) and ETM(i, j). Condition (19) forces each arc to
be contained in a single Delaunay triangle.

8 SYSTEM

The proposed method is implemented as an interactive three-
dimensional origami design system (Figure 1 Top). The input
figure is given as a polygon mesh (Figure 18 (a)). First, the sys-
tem constructs cuts to obtain the polygonal schema, which can
be further modified by a user (Figure 18 (b)). Then, the system
maps the polygons of the input polyhedral surface based on the

mapping algorithm and generates the crease pattern (Figure 18
(c)). The user can manipulate the configuration and the crease
pattern through a standard pointing device (e.g. mouse). Since
the system both updates and displays the crease pattern and
the resulting shape of the folded tuck, a user can interactively
design three-dimensional origami models using this system.

Cut Map

Topological

Manipulation

Crease Pattern

Manipulation

(a) (b) (c)

Fig. 18. The system for designing three-dimensional
origami models. Changing cuts yields different visible
seams and crease patterns for the same genus 2 poly-
hedron.

8.1 Topological Manipulation

The input is given as an orientable polygon mesh of arbitrary
genus, which is cut to a polygonal schema ready to be mapped.
As the cut, i.e., the boundary, is visible as a separated seam on
the folded model, the system provides valid cuts controllable
according to the preference of the user, in the following
manner.

First, the system constructs a tree shape from a given mesh
by breadth-first flooding. The boundary is then simplified by
removing branches and jags. The user can specify the root of
the tree, which will be located approximately in the middle of
the paper.

Then, the boundary can be further modified. The mod-
ification is performed through the following two types of
tools: (i) a tool to add (or delete) a selected edge into the
existing boundary by connecting it via the shortest path and
(ii) a tool to move the boundary by altering the connectivity
around selected facets (Figure 19). A combination of these
tools enables the user to freely modify the boundary while
maintaining the surface homeomorphic to a disk throughout
the manipulation.

8.2 Crease Pattern Manipulation

While the system automatically solves the inequalities, a user
can modify the crease pattern in order to improve the aesthetics

11

Fig. 19. Relocation of the perimeter by altering the
connectivity around a facet.

of the model, including the shape of the folded tuck and the
crease pattern itself. In order to modify the crease pattern,
the system provides a tool to pick and drag mapped polygons
and a tool to increase or decrease the widths of specified edge-
tucking molecules. This tool allows a user to modify the crease
pattern without changing the representing three-dimensional
polyhedral surface.

The user input is converted into penalty forces that are
applied to edge-tucking molecules when the translational con-
figuration is being updated (Section 6.3). Iterative calculations
are performed at an interactive frame rate for models with
less than 700 edge-tucking molecules, examples of which are
shown in Section 9.3.

The system facilitates the automatic splitting of edge-
tucking molecules, in order to solve the inequalities. A user
can also obtain the desired crease pattern by manually speci-
fying the molecules to be split or merged. After splitting, the
LU factorization for solving (18) is recalculated, which allows
further manipulation of the crease pattern.

The modification of the crease pattern alters the shape of
the folded tuck behind the surface, which is visible when
folding a surface with a boundary (Figure 20). The folded
tuck is visualized and continuously updated to follow the
modified layout; this allows a user to understand the result
while designing.

(a) (b)

Fig. 20. Orientable surface with a boundary. (a) Tuck is
folded inside. (b) Same mesh with opposite orientation.
The tuck is folded outside.

9 RESULTS

9.1 Examples

The proposed method was applied to six polyhedral surfaces.
The generated crease patterns were realized to form real paper
models, each of which was folded from one piece of paper,
as shown in Figure 22. In models (a)-(d), the resulting crease
patterns were automatically determined from the original topo-
logical disk meshes. Since model (e) was homeomorphic to
a sphere, the software automatically determined the cut path
on the surface. The cut path was then symmetrically oriented
through a user interface for aesthetic reason. Thus far, the
bunny model (f) is the most complicated models tested and
folded. Although the original mesh was homeomorphic to
a disk, additional user interaction for editing cut path was
necessary, because the automatically generated crease pattern
was highly inefficient (Figure 24). The paths behind the ears
were chosen intuitively according to an empirical strategy in
designing origami to place long flaps onto the perimeter of the
paper. In these 6 models, the layouts were determined by the
two-step approach, requiring no remapping process.

9.2 Results of Folding

The author has folded three-dimensional origami models from
actual sheets of paper using the crease patterns generated by
the design system (Figure 22). The original shape of the paper
was a convex polygon. First, the generated crease pattern data
is sent to a cutting plotter, which scores a sheet of paper along
the crease pattern with its blade. Then, the paper is precreased
and folded into a three-dimensional model, without the need
for extra folds for shaping. The approximate time needed to
fold a sheet of paper into the desired three-dimensional shape
is shown in Figure 23.

The scoring by a cutting plotter helps the folder to fold
precisely along the crease pattern. A laser cutter is also suitable
for this purpose. In the given examples, the paper is scored
from one side for aesthetic reason; however, scoring the paper
from both sides can help to fold it easily.

Visible seams on a folded model lie on the lines of the
three-dimensional mesh, which has a certain aesthetic quality,
especially when backlit (Figure 21). The similar quality is
pursued by the existing origami technique known as “origami
tessellations” [35], [36], which expresses the geometric beauty
of synthetic and natural patterns through repetitive pattern on
a plane. Our results extend this type of expression to a three-
dimensional one.

The origami models were practically realizable because of
the following three reasons: thickness (Section 9.2.1), struc-
tural stiffness (Section 9.2.2), and efficiency (Section 9.2.3).

9.2.1 Thickness
From the viewpoint of thickness, the feasibility in folding is
examined by considering the number of layers of paper folded
at the same fold. In the proposed method, this type of folding
occurs only when the folded tuck composed of2 layers of
paper is crimp-folded.

The bunny model shown in Figure 22(f) is folded from
a sheet of convex paper that is approximately500 mm in

12

(a)Hyperbolic Paraboloid (b)Gaussian (d)Mask(c)Mouse (f)Stanford Bunny(e)Tetrapod

Fig. 22. Origami models designed using the system. Top row shows the crease patterns. Middle row shows the actual
models folded from a sheet of paper (each).

Fig. 21. Backlit origami models.

diameter and116 g/m2 in thickness. This paper is thicker than
that used for folding some conventional super complex origami
models, which require paper with a thickness of19 g/m2.

9.2.2 Structural Stiffness

The resulting folded shape holds its own shape, because the
crimp-folded tucking molecules prevent each vertex to split
apart. The stiffness of the shape can be measured in terms of
the stability of the target polyhedral surface homeomorphic to
a disk.

A truss model is used to briefly examine the stability of
the surface polyhedron. The surface is triangulated and all the
edges of the polyhedron are regarded as rigid bars, which result
in an unstable structure. In general, the number of degrees of
freedom or degrees of instability of this structure is given by,

Degrees of Instability= 3v − e − 6 = e0 − 3,

wherev, e, ande0 are the number of vertices, edges, and edges
on the boundary of the triangulated surface, respectively. The
calculated degrees of instability of the folded models in this

study and the estimated value of those in previous study [27]
are compared, as shown in Figure 23. The degrees of instability
in our study are substantially lower, which indicates a higher
stiffness of the surface.

9.2.3 Efficiency
Although the example models were folded from a convex
piece of paper, they could also be folded from a square
piece of paper because the boundary of the crease pattern
is approximately circular in shape, which can be efficiently
packed in a square.

The efficiency of a crease pattern can be defined as the ratio
of the surface area of the input model to that of the square
paper to be folded. The efficiency of the crease patterns of
the example models is within the range of0.1 to 0.5, which
is considerably better than previous studies (Figure 23). For
example, if a Gaussian model, as shown in Figure 23(b), with
efficiency of0.415 is to be folded by the method described in
[27], the most optimistic estimation of the efficiency is0.0017
as the method requires a strip narrower than1 : 1100.

9.3 Time

Figure 23 shows the amount of time required for performing
calculations on a laptop PC with a Pentium M1.60 GHz
using SSE2 instructions through ATLAS. Precalculation was
completed in a few seconds, and the iterative calculation was
performed at an interactive frame rate. The time required to
converge varied with models, and it was within20 s for the
models used as examples in this study. The longer convergence
time was attributed to the use of the gradient descent method,
which can be replaced with a faster method. Nevertheless, this
was a fairly reasonable amount of time over which we could

13

repeatedlymodify the boundary and perform remapping until
we obtain a desired crease pattern, before actually folding the
model for several hours.

(a) (b) (c) (d) (e) (f)

Facets: Quadrilateral
Triangles

64 64 40 32 144 0
0 0 62 154 72 374

Boundary Edges 32 32 16 14 20 50
Edge-Tucking Molecules 208 208 213 317 446 606

Deg. Instability 29 29 13 11 17 47
Deg. Instability in method[8] 382 382 548 960 1222 1868

Efficiency 0.180 0.415 0.272 0.265 0.143 0.172

Precalculation Time [s] 0.047 0.047 0.16 0.16 0.40 1.2

Convergence Time [s] 0.156 0.094 3.81 1.91 4.03 15.0

Folding Time (approx.) [h] 2 2 3 6 4 10

Iteration Frame Rate [fps] 128 128 93.0 51.1 34.2 16.5

Fig. 23. Results of the system

10 DRAWBACKS AND FUTURE WORKS

It should be noted that the proposed algorithm does not always
guarantee a solution, as stated in Section 6.5. Some models
fail to be validly mapped even after the iteration of remapping
or result in highly inefficient crease patterns. These failure and
inefficiency occur mainly because a solution is dependent on
the topology of the surface and the mesh.

A problem of this kind is often solved by appropriately
modifying the boundary on the surface using tools provided
by the system (Figure 24). In general, adding boundary edges
increases the degrees of freedom and enables a valid solution.
It is further observed that placing the boundary onto acute
points on the surface increases the efficiency of the crease
pattern; this is a similar strategy used in conventional origami
designs. However, the process still relied on intuitive trial and
error by an experienced origami designer. We intend to develop
a method for automatically finding an appropriate cutlines
from a given mesh.

Fig. 24. Left: Bunny without modification of the boundary
results in the generation of a crease pattern with a low
efficiency (0.007). Right: Efficiency of the bunny with
modified boundary behind the ears is 0.172.

When applying our technique to develop art and industrial
designs, the objective is often in building an approximation
of a smooth surface. Suppose the desired shape is given as
a dense triangular mesh, it must be sufficiently simplified
for later calculation and folding by a tessellation method

such as triangular remeshing [37], [38], [39], [40], [41],
quandrangulation [42], [7], and segmentation with developable
patches [43], [8].

The tessellation itself can be a variable that is optimized
within the origamization procedure. In order to improve ro-
bustness of the system by changing the tessellation, we intend
to characterize a “nice” mesh that ensures a valid solution and
improves the efficiency. An empirical observation indicates
that this characteristic is not simply the regularity of triangles
and connection, as opposed to a naive expectation.

As mentioned in the introduction, our method can po-
tentially be used in a wide variety of applications since it
provides a solution for the general and critical problem of
achieving an arbitrary three-dimensional shape from a single
sheet of material. However, it is necessary to further improve
our method in order to apply it to widespread industrial
purposes. This is because our method produces a number of
crimp-folds, thus locking other folds; such crimp-folds prevent
a material from transforming smoothly into a desired state
without stretching, and they may potentially allow thick or
brittle materials to rupture at the vertices.

One of the improvements to our method that is worth con-
sidering is the optimization of the configuration of the mesh
and the tuck proxy such that all the crimp-folds disappear. This
would significantly simplify the manufacturing of a desired
surface and it would be more suitable for on-demand or mass
production and for on-site construction. This will also lead
to further studies on transformable or deployable structures
that can tightly cover freeform surfaces; such structures could
potentially be used for the designs of prefabricated architec-
tures for use in severe environments such as in space, medical
devices used in minimally invasive surgery, and several types
of watertight containers that can be compactly packaged.

11 CONCLUSION

This paper presented the first practical method for obtaining
a crease pattern for folding a piece of paper into a given
polyhedral surface, without cutting the paper. The algorithm
is implemented as an interactive origami design system,
which enabled the generation of crease patterns from several
computer-generated three-dimensional models with less than
400 polygons, in a short time span. The generated crease
patterns were folded in practice to produce highly complex
three-dimensional origami models, for the first time.

The method sometimes fails to satisfy conditions or gener-
ates highly inefficient crease patterns. In future, we intend to
develop a more robust algorithm to avoid such failure and to
improve the efficiency of the generated crease pattern.

ACKNOWLEDGEMENT

The development of the design system was supported by
IPA (Information-technology Promotion Agency, Japan). This
research is also partially supported by a Grant-in-Aid for JSPS
(Japan Society for the Promotion of Science) Fellows. The
original bunny model is courtesy of the Stanford 3D Scanning
Repository.

14

REFERENCES

[1] E. D. Demaine and J. O’Rourke,Geometric Folding Algorithms: Link-
ages, Origami, Polyhedra. Cambridge University Press, July 2007.

[2] J. Mitani and H. Suzuki, “Making papercraft toys from meshes using
strip-based approximate unfolding,”ACM Trans. Graphics, vol. 23,
no. 3, pp. 259–263, 2004. Proc. SIGGRAPH.

[3] F. Massarwi, C. Gotsman, and G. Elber, “Papercraft models using
generalized cylinders,” inPG ’07: Proc. the 15th Pacific Conference
on Computer Graphics and Applications, pp. 148–157, 2007.

[4] D. Julius, V. Kraevoy, and A. Sheffer, “D-charts: Quasi-developable
mesh segmentation,” inProc. Eurographics, pp. 581–590, 2005.

[5] C. C. L. Wang, “Towards flattenable mesh surfaces,”Computuer-Aided
Design, vol. 40, no. 1, pp. 109–122, 2008.

[6] J. Subag and G. Elber, “Piecewise developable surface approximation of
general NURBS surfaces with global error bounds,” pp. 143–156, 2006.

[7] Y. Liu, H. Pottmann, J. Wallner, Y.-L. Yang, and W. Wang, “Geometric
modeling with conical meshes and developable surfaces,”ACM Trans.
Graphics, vol. 25, no. 3, pp. 681–689, 2006.

[8] H. Pottmann, A. Schiftner, P. Bo, H. Schmiedhofer, W. Wang, N. Bal-
dassini, and J. Wallner, “Freeform surfaces from single curved panels,”
ACM Trans. Graphics, vol. 27, no. 3, 2008. Proc. SIGGRAPH.

[9] M. Wertheim, “Cones, curves, shells, towers: He made paper jump to
life,” The New York Times, june 22 2004. http://www.theiff.org/press/
NYThuffman.html.

[10] R. D. Resch and H. Christiansen, “The design and analysis of kine-
matic folded plate systems,” inProc. the Symposium for Folded Plate
Structures, International Association for Shell Structures, 1970.

[11] R. D. Resch, “Ron resch dot com.” http://www.ronresch.com/.
[12] J. Lobell, “The milgo experiment: an interview with haresh lalvani,”

Architectural Design, vol. 76, no. 4, pp. 52–61, 2006.
[13] RoboFold, “Robofold.” http://www.robofold.com/design.html.
[14] D. Huffman, “Curvature and creases: a primer on paper,”IEEE

Trans.Computers, vol. C-25, no. 10, pp. 1010–1019, 1976.
[15] Y. Kergosien, H. Gotoda, and T. Kunii, “Bending and creasing virtual

paper,” IEEE Computer Graphics and Applications, vol. 14, no. 1,
pp. 40–48, 1994.

[16] M. Kilian, S. Flöry, N. J. Mitra, and H. Pottmann, “Curved folding,”
ACM Trans. Graphics, vol. 27, no. 3, 2008. Proc. SIGGRAPH.

[17] S.-M. Belcastro and T. Hull, “A mathematical model for non-flat
origami,” in Origami3: Proc. the 3rd International Meeting of Origami
Mathematics, Science, and Education, pp. 39–51, 2002.

[18] T. Tachi, “Rigid origami simulator,” 2007. http://www.tsg.ne.jp/TT/
software/.

[19] R. Burgoon, Z. J. Wood, and E. Grinspun, “Discrete Shells Origami,”
in Proc. Computers And Their Applications, pp. 180–187.

[20] M. Bern and B. Hayes, “The complexity of flat origami,” inProc. the
7th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 175–
183, 1996.

[21] T. Meguro, “The method to design origami,”Origami Tanteidan News-
paper, 1991.

[22] E. D. Demaine, M. L. Demaine, and A. Lubiw, “Folding and cutting
paper,” inRevised Papers from the Japan Conference on Discrete and
Computational Geometry (JCDCG’98), pp. 104–117, 1998.

[23] R. J. Lang, “A computational algorithm for origami design,” inSCG
’96: Proc. the twelfth annual symposium on Computational geometry,
pp. 98–105, 1996.

[24] M. Bern, E. Demaine, D. Eppstein, and B. Hayes, “A disk-packing
algorithm for an origami magic trick,” inOrigami3: Proc. the 3rd
International Meeting of Origami Mathematics, Science, and Education,
pp. 17–28, 2002.

[25] M. Bern and B. Hayes, “Origami embedding of piecewise-linear two-
manifolds.,” inLATIN, vol. 4957 ofLecture Notes in Computer Science,
pp. 617–629, 2008.

[26] R. J. Lang,Tree Maker 4.0 : A Program for Origami Design, 1998.
http://www.langorigami.com/science/treemaker/TreeMkr40.pdf.

[27] E. D. Demaine, M. L. Demaine, and J. S. B. Mitchell, “Folding flat
silhouettes and wrapping polyhedral packages: New results in compu-
tational origami,”Computational Geometry: Theory and Applications,
vol. 16, no. 1, pp. 3–21, 2000.

[28] M. Tanaka, “Possibility and constructive proof through origami,”Hyogo
University Journal, no. 11, pp. 75–82, 2006.

[29] T. Tachi, “3D origami design based on tucking molecule,” inOrigami4:
Proceedings of The Fourth International Conference on Origami in
Science, Mathematics, and Education, 2009. to appear.

[30] Tama Software, “Pepakura designer,” 2004. http://www.tamasoft.co.jp/
pepakura-en/.

[31] T. K. Dey, “A new technique to compute polygonal schema for 2-
manifolds with application to null-homotopy detection,” inProc. ACM
SoCG ’94, pp. 277–284, 1994.

[32] F. Lazarus, M. Pocchiola, G. Vegter, and A. Verroust, “Computing a
canonical polygonal schema of an orientable triangulated surface,” in
Proc. ACM SoCG ’01, pp. 80–89, 2001.

[33] X. Gu, S. J. Gortler, and H. Hoppe, “Geoemtry images,”ACM Trans.
Graph., vol. 21, no. 3, pp. 355–361, 2002.

[34] W. Tutte, “How to draw a graph,” inProc. the London Mathematical
Society, pp. 743–768, 1963.

[35] A. Bateman, “Computer tools and algorithms for origami tessellation
design,” in Origami3: Proc. the 3rd International Meeting of Origami
Mathematics, Science, and Education, p. 121, 2002.

[36] E. Gjerde,Origami Tessellations: Awe-Inspiring Geometric Designs. AK
Peters, 2008.

[37] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle,
“Mesh optimization,” inProc. ACM SIGGRAPH ’93, pp. 19–26, 1993.

[38] M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, and
W. Stuetzle, “Multiresolution analysis of arbitrary meshes,” inProc.
ACM SIGGRAPH ’95, pp. 173–182, 1995.

[39] A. W. F. Lee, D. Dobkin, W. Sweldens, and P. Schroder, “Multiresolution
mesh morphing,” inProc. ACM SIGGRAPH 99, pp. 343–350, 1999.

[40] P. Alliez, M. Meyer, and M. Desbrun, “Interactive geometry remeshing,”
ACM Trans. Graph., vol. 21, no. 3, pp. 347–354, 2002.

[41] G. Peyŕe and L. Cohen, “Geodesic remeshing using front propagation,”
in Proc. Variational and Level Set Methods in Computer Vision 2003,
pp. 33–40, 2003.

[42] S. Dong, P.-T. Bremer, M. Garland, V. Pascucci, and J. C. Hart, “Spectral
surface quadrangulation,”ACM Trans. Graph., vol. 25, no. 3, pp. 1057–
1066, 2006.

[43] D. Cohen-Steiner, P. Alliez, and M. Desbrun, “Variational shape approx-
imation,” ACM Trans. Graph., vol. 23, no. 3, pp. 905–914, 2004.

