Origamizing Polyhedral Surfaces

Tomohiro Tachi

Abstract—This paper presents the first practical method for “origamizing” or obtaining the folding pattern that folds a single sheet of
material into a given polyhedral surface without any cut. The basic idea is to tuck fold a planar paper to form a three-dimensional shape.
The main contribution is to solve the inverse problem; the input is an arbitrary polyhedral surface and the output is the folding pattern.
Our approach is to convert this problem into a problem of laying out the polygons of the surface on a planar paper by introducing the
concept of tucking molecules. We investigate the equality and inequality conditions required for constructing a valid crease pattern. We
propose an algorithm based on two-step mapping and edge splitting to solve these conditions. The two-step mapping precalculates
linear equalities and separates them from other conditions. This allows an interactive manipulation of the crease pattern in the system
implementation. We present the first system for designing three-dimensional origami, enabling a user can interactively design complex
spatial origami models that have not been realizable thus far.

Index Terms—Origami, origami design, developable surface, folding, computer-aided design.
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1 INTRODUCTION proposed to obtain nearly developable patches represented as
friangle meshes, either by segmenting the surface through
%ue fitting of the patches to cones, as proposed by Julius

it. Creating an origami with desired properties, particularly §l: O by minimizing the Gauss area, as studied by Wang
desired shape, is known asigami design. Origami design [5]. Subag and Elber [6] approximated NURBS surfaces with

: ; 1 .
is a challenge faced not only by origami artists but aldyecewiseC” developable surfaces. A method with planar

by designers and engineers who apply origami to industr@yad mesh [7] successfully creates a discrete representation of
purposes. The objective of this research isotigamize a a C' developable surface, and Pottmann et.al. [8] use planar

given polyhedral surface, defined in this paper as an origaﬂHad mesh to approximate a freeform surface with developable

design to obtain a folding pattern that folds into a given threB2N€ls. o _
dimensional shape. On the other hand, an origami surface i€’ developable

surface, which allows a finite number of creases. It is known

that creating folds or creases onto a single surface results in the
1.1 Developable Surfaces formation of a wide variety of forms such as curved folding
A folded stateof origami is roughly defined as a topologicakreated by Huffman [9], periodic folding created by Resch
disk in three-dimensional space onto which a square can [B8], [11], and various other contemporary origami sculptures.
isometrically mapped with a one-to-one mapping such that aly the 2000s, sheet metal designs have been developed that
portions of the surface do not intersect but are allowed to toughply curved folding, such as column covers by Lalvani [12]
each other. A precise mathematical description of origami @&nd a car model by Epps [13]; these designs suggest a new
derived by Demaine and O’Rourke [1]. field of origami design for industrial purposes.

In an engineering sense, this isometric mapping representd hus far, several studies have been conducted to analyze or
the deformation of the surface of hard thin sheet materials sugmulate three-dimensional surfaces with folds. Huffman [14]
as paper, plastic, and metal sheet. The surface obtaineddegcribed creases on a developable surface using the Gauss
such a deformation is termed developable surface, which traap and introduced a method to create a special case of
ditionally implies a smooth, i.e(’' continuous, developable curved folding. Also there have been studies to computation-
surface. ally represent folds between piecewise linear approximation

C' developable surfaces have been used for architectupfldevelopable surfaces. Kergosien et.al. [15] simulated the
and other industrial designs since they can be produced &sgases created on a curved paper, and Kilian et.al. [16]
simply bending the surfaces of continuous sheet materidfisst succeeded in discretely representing a general case of
Methods to design a freeform surface by assembling develirved folding. Piecewise linear origami is defined as rigid
opable or nearly developable surfaces have been proposwtgami, whose local behavior around a vertex is investigated
Mitani and Suzuki [2] and Massarwi et.al. [3] constructed aby Belcastro and Hull [17]. The rigid origami simulator [18]
arbitrary surface with triangle strips, each of which approxs an interactive system that animates piecewise linear origami
imates aC' developable surface. Other methods have be#nthree-dimensional space. Another representation of origami
is to use a discrete shell simulation, as used by Burgoon et.al.
e Theauthor is with the Department of Architecture, the University of Tokyl{,lg], which takes the elasticity of paper into account.

Tokyo, Japan. E-mail: ttachi@siggraph.org Despite conducting these analytical studies and developing

simulational methods, no practical method for designing an

ORIGAMI is an art of folding a single piece of pape
into a variety of shapes without cutting or stretchin




origami surface has been developed. The objective of thaad connectivity. The algorithm is implemented as an origami
study is to realize a freeform shape out of a single devalesign software TreeMaker [26]. The tree method enables the
opable surface with creases. Although the key applicati@neation of origami with vast complexities; however, it is only

of the proposed method is to create a new artistic origanpigssible to control one-dimensional properties, i.e., the lengths
this method is also expected to be applicable for industriaf flaps. An intuitive process wherein an experienced origami
purposes in the future. Prospective applications include thdist performs the “shaping” is essential to transform such an
design of architectural elements such as facades, roofs, furigami base into the final shape. In addition, it is virtually

ture, and light fixtures, which require both designability antnpossible even for experienced origami artists to create

manufacturability a desired three-dimensional shape using this approach. In
contrast, our method can precisely represent three-dimensional
1.2 Flat Folding shapes without additional shaping.

Flat-foldable origami is a special type of origami where every
point on a folded state lies on a plane. In the case of flat:3.2 Folding a Polyhedron

foldable origami, acrease patterni.e., the inverse image

of foldlines, is described as a simple straight-edged tw@€maine et al. [27] proved that any polyhedron can be

dimensional graph drawn on a plane, each line segment&@fated by folding a square piece of paper. The basic idea
the algorithm provided in the proof is to fold the square

which represents a mountain or a valley. The crease pattQIfn ! ) X ;
represents the points on which the points on a paper et of paper into a thin  strip, 'and th_en, wrap th? strip
ground the desired polyhedron. It is practically impossible to

mapped; however, if the points are folded in a manner X . .
which they overlap, determining the overlapping ordering €Sign any actual model using this approach, because of the

the paper is not a trivial problem. It has been proved by Bel€fficiency arising from the algorithm, which relies on an
and Hayes [20] that determining a valid configuration of gxtremely narrow strip. In addition, the strip does not stably

folded state only from a crease pattern is an NP-compIéEStain the.three—dimensional shape if it .is constructed by the

problem with worst-case complexity. abovementloned' approach. Section 9.2 discusses the efficiency
However, some general design problems are solved Bd structural stiffness of the folded model.

dividing a global crease pattern into fragments, each of which Tanaka [28] proposed another technique based on folding

is bounded by a polygonal region. The crease pattern of sigpaper into the development of the given polyhedron. This

a fragment is designed to have a characteristic such tkgghnique is also not practical for the same reasons — the

desired points and lines are folded to overlap each othggnerated crease pattern is inefficient, and the folded shape is

In an origami design, such a fragment is termedlecule, unstable, because the algorithm begins with the formation of

coined by Meguro [21]. For example, a molecule that fold® complex tree-shaped polygon.

the perimeter of a given polygon onto a common line is

applied for the fold and cut problem [22]. A further extended 3 3 Tucking

molecule termeduniversal moleculeprovides the flexibility

of deciding which parts of the perimeter must 0\/er|ap; thié is a well-known fact that a flat sheet of paper can be curved

correspondence between the parts is represented with a cifetuck folding. Some origami artists empirically apply the

packing pattern [23]. The concept of universal molecule fgck-folding technique to shape a three-dimensional surface.

applied for designing a tree-shaped origami [23] (Sectidd@sed on the idea of tuck-folding, the author has previ-

1.3.1), solving the fold-and-cut problem [24], and flat-folding@Uusly proposed a technique for designing a three-dimensional

polyhedra [25]. origami surface by tucking and hiding the unwanted areas
In this paper, another type of molecule termeatking ©Of & paper [29]. The work proposes the concept of tucking

moleculeis used. Tucking molecules are partially flat-foldabl&olecules, i.e., fragments of crease pattern specially designed

structures that assemble corresponding edges of polygonsf@ntucking. However, no algorithm or system has been devel-

a three-dimensional surface. oped, and the entire design process relies on trial and error
using a conventional paper craft software [30] and a vector
1.3 Previous Origami Desigh Methods drawing software. It sometimes takes several weeks to create a

crease pattern for realizing a three-dimensional origami model

1.3.1 Tree Method o . using this technique.
The tree methochas been the only existing practical compu-

tational origami design method for realizing desired shapes.
Its basic concept was first introduced in [21], which stateS,  contributions

that an arbitrary tree-shaped origami figure can be constructeé

from a pattern of circles and rivers packed into a squara this study, the first practical method and the system for
Lang [23] described the theory of the tree method with sontkesigning a three-dimensional origami model have been devel-
proofs and proposed a computational algorithm. The proposgukd. Although the method does not guarantee the origamiza-
method generates a crease pattern that folds infoase, tion of an arbitrary polyhedron, it is practical enough to
i.e., a folded shape whose projection to a plane is exactyable elaborate three-dimensional origami models (Figure 1).
the same as the given tree shape with arbitrary edge lengBudlowing are the main contributions of this study.



1.4.1 Polygons and Tucking Molecules

Our technique is developed on the basis of the concept
tucking molecules proposed in the author’s previous work [2¢
We additionally formalize the conditions and parameterize tt
configuration. This parameterization translates the problem
designing three-dimensional origami into a problem of layin
out polygons on a plane. In order to implement this techniqu
sufficient conditions for obtaining a valid crease pattern a
investigated. It is shown that the conditions are represeni
by non-linear equations and inequalities.

T i

1.4.2 Mapping and Edge Splitting

In this study, a novel algorithm has been developed to sol
the above-mentioned conditions. The algorithm is based
two-step mapping and edge splitting.

The first step of mapping fixes the rotations of the poly
gons. This converts non-linear equations into linear equatiol
which are then precalculated. Under these precalculated lin
equations, the remaining inequalities are solved by an iterat
method. The precalculation enables a fast computation for e:
iterative step, which also allows a real-time human interactio

Edge splitting is a recursively applicable procedure that lo-
cally changes the crease pattern without changing the origiéd. 1. Top: Desired polyhedral model (Stanford Bunny)
surface. This procedure decreases the number of conditionata the created crease pattern. Bottom: World's first
be solved. Mapping is performed under these relaxed condrigami Stanford Bunny.
tions, following which edge splitting is performed recursively

on the given pattern. Convex Polygon Folded State
P F(P) 5
1.4.3 Interactive Design System NI -
Our algorithm was implemented as an interactive system 1\J ':> ‘N§=§"- ':> <
F
14

~ N
origami design. The system automatically generates a cre h"‘””
pattern from an input polyhedral surface while allowing users

to edit the topology of the three-dimensional mesh and tg ) o ) )
modify the resulting crease pattern. These tools are desigied: 2- Origamization is achieved by creating a crease

to be consistent with the required disk topology and trRAtern representing F(P) such that F(P) c V and
conditions for origamization. F(P) D S. The convex polygon P can be further folded

from a square.

2 METHOD OVERVIEW
2.1 Description of the Problem 2.2 Procedure

In this paper, the origamization of a polyhedral surface f&2-1 Cutting to a Disk
defined as, obtaining a crease pattern of origami that construtie first step toward origamizing a surface not homeomor-
a polyhedral surface with hidden tucks, instead of constructifjic to a disk is to construct a polygonal schema, which
only the exact surface. is a polyhedral surface homeomorphic to a disk that covers
Let S and V(D S) denote a set of all points on the giverthe original surface. A polygonal schema is represented by
polyhedral surface and the solid enclosed$yrespectively. cutlines along the edges of the surface which correspond to
Then, the goal is to create the crease pattern on a planar corifig&boundary of the disk. Several algorithms are proposed to
polygon P so that the folded stat&'(P) is contained iny/  obtain “nice” polygonal schemata [31], [32], [33], and in the
and S is contained inF'(P). S can be an orientable manifoldSystem proposed, a combination of flooding and modification
with a boundary that does not completely enclose a volur®y the user is adopted, as discussed later in Section 8.1.
in which caseV is given to indicate a finite region hidden
behind S. 2.2.2 Mapping Surface Polygons
Note that the planar convex polygaR can be obviously The next major step is to separate individual polygons of the
folded from a square containing by folding and hiding the given polyhedral mesh and map each of them congruently on
unnecessary area behind. The minimum size of such a squagane. The problem here is to obtain a folding that folds the
paper is used when measuring the efficiency of the modabpped polygons properly back fband the gap between the
(Section 9.2.3). polygons toV'\ S. The shape of the gap, defined by the layout



of the polygons, determines whether such a folding is possit*- )\
or not, the conditions on which are investigated in Section

The layout is determined by solving these conditions as sho A/ﬁ>
in Section 6.

2.2.3 Generating a Crease Pattern

In order to tuck fold the gap to make it completely hidde (a) (b) (©)
behind the surface, the gap is subdivided into simple pOIVQOD’vaX-Tuckmg Molecule
with crease patterns terméacking molecules, as described in
Section 3. The crease pattern on a tucking molecule is cre
such that it “glues” separated vertices or a pair of edges

folding itself. The combination of these molecules enables 2 §, constructed by inserting tucking molecules be-

: . een mapped surface polygons. (¢) Gap is tuck-folded
folding pattern that hides the unwanted gaps and makes he . !
separated polygons connected again (Figure 3). Eoebe completely hidden behind the surface, thereby the

surface polygons are “glued” together again.

[ ] Edge-Tucking Molecule [ ] Surface Polygon

|d. 4. (a) Polyhedral surface S. (b) Tessellation derived

D Edge-Tucking Molecule
[] Surface Polygon

-~ Valley Crease
General Symmetric ___ Mountain Crease

By

Fig. 5. Edge-tucking molecules. Segments AyBy and
A,B; are folded onto the same edge AB.

Fig. 3. Folding motion of the crease pattern. The tuck
is hidden and the surface polygons are glued together

as the corresponding vertices are folded to the same 3.2 Vertex-Tucking Molecule
position. A vertex-tucking molecule corresponds to &irgon that joins

N pieces of the edge-tucking molecules sharing a single
vertex. The surrounding vertices of a vertex-tucking molecule
3 TUCKING MOLECULES are folded onto a single vertex by folding along its crease
Two types of tucking molecules are used in this study. Omattern.
type is theedge-tucking moleculevhich is a quadrilateral with ~ Such a crease pattern can be generated for a given shape
a crease pattern inserted between a pair of edges corresp@fidnolecule by the Voronoi folding, i.e., folding along the
ing to a single edge or$. The second type is theertex- Voronoi diagram. The concept of Voronoi folding is based
tucking molecule, which is afv-gon with a crease patternupon the idea of the circumcentric folding of a triangle, i.e.,
surrounded byN edge-tucking molecules, whosé vertices folding the triangle along the perpendicular bisectors of its
correspond to a single vertex ¢h Therefore, a planar region sides and folding three vertices onto a single point. Following
is tessellated into the original polygons of the surface, edgee the procedure (Figure 6).
tucking molecules, and vertex-tucking molecules (Figure 4).1) Draw the Voronoi diagram with valley creasesn)

This derived tessellation is termedolecule mesh. whose generating points are the vertices of the molecule.
. 2) Connect each Voronoi vertex and adjacent generating
3.1 Edge-Tucking Molecule points with mountain creases (the fold angles are deter-
Assume that surface polygons(P,) and F(P;) share the mined by the tuck proxy, defined later in Section 4.3).
same segmenAB on S, as shown in Figure 5 Left. Let 3) Add crimp folds that makes the folded state fit the
AoBy and A;B; denote the edges that correspond AB. curvature of the surface polygons (discussed later in

Then, the edge-tucking molecule corresponds to quadrilateral Section 4.3).
ApBoB1A;. In general, the crease pattern can be defined
if anq on!y if the quqdnlate_ral is a smple polygon wnh_a4 CONDITIONS
positive signed area, i.e., without flipping, and the condition
min(A¢By, A1 By) > AB is satisfied. The sufficient conditions for achieving origamization are de-
In addition, the proposed algorithm assumes that the edgétibed by equalities and inequalities on the configuration of
tucking molecules are symmetric, i.e., each quadrilateral is H1¢ mapped surface polygons. The conditions can be stated as
isosceles trapezoid, wher,A; is parallel toByB; (Figure follows.
5 Right). In this case, the crease pattern of an edge-tuckingl) All surface polygons are isometrically mapped, and
molecule is simply a single valley creasex) on the axis of all pairs of mapped edges are symmetrically aligned
reflection in which the edges are reflected onto each other. (Equality conditions: Section 4.1).



Then, equality conditions around verteare given as follows.

N—-1 N—-1
> 0, gn) =20 = ali,jn) 1)
n=0 n=0

and

S [m& o] <[] @

n=0

Fig. 6. Crease pattern for creating a vertex-tucking
molecule is generated using the Voronoi diagram.

where®,,, is the external angle between the adjacent edges of
a vertex-tucking molecule (Figure 8), given by

2) The mapped polygons and tucking molecules tessellate 0,, = 19(i,jm71) + (i, jom) + 19(2'7.7'771) (3)
a convex polygon, and the molecule mesh yields a valid 2 2
crease pattern (2D inequality conditions : Section 4.2)'he right-hand side of equation (1) is the Gauss area of
3) The folded state follows the curvature ¢ and is the original surface at the vertex, which is modified to

contained inV (3D inequality conditions: Section 4.3).be zero by adding or subtracting extra angles using edge-
tucking molecules. Equation (2) ensures that the vertex-

tucking molecule forms a closed polygon.
4.1 Equality Conditions o .
All mapped surface polygons are isometric and the edge- O(igy) ™
tucking molecules are symmetric. The configuration of th
molecule mesh can be represented by distances and ang| aliyy)
of the edge-tucking molecules. w(i.jg) 0(idy)

For a pair of adjacent vertices;, angled(i, j) is defined }4 ' 0(2.,)
as the angle between a pair of edges corresponding toigdge Biy.p) i) B I
whose sign is assigned according to the orientation of the rota- i 0(i3,) boundary molecule
tion about vertex. The widthw(s, j) is defined as the signed @) (®)
length of the edge on the boundaryV6T'M(i) (vertex-tucking
molecule corresponding t@) shared byETM(i, j) (edge-
tucking molecule corresponding ig), whose negative value
indicates that the molecule is crossed or flipped. Since ed
tucking molecules are represented by isosceles trapezo
0(j5,4) = —0(i, j) andw(j, i) = w(i, j)+2£(i, j) bln(%@(z,])),
where/(i, 7) is the length of edgej (Figure 7).

1 a(ij)
(t.y) 0(i.j,)

Fig. 8. (a) Vertex-tucking molecule surrounded by poly-
ns and edge-tucking molecules. (b) Vertex-tucking
glecule on the boundary.

4.2 2D Inequality Conditions

In order to ensure a valid crease pattern, it is necessary that
a convex paper can be tessellated into surface polygons and
tucking molecules (Section 4.2.1), and a valid crease pattern
can be constructed from the molecule mesh (Section 4.2.2).

4.2.1 Convex Paper and Non-overlapping Conditions

The condition that satisfies the convexity of paper is given as
follows. For every boundary moleculeTM(i, o),

0(i,0) > 4)
We assume that an extra edge-tucking molecule termed w(i,0) >0 (5)

boundary moleculeis connected to each vertex-tucking pecause the boundary of the molecule mesh is convex, no
molecule on the boundary of the surface. Then, all vertegyeriapping occurs without the local intersection or flipping of
tucking molecules are surrounded by polygons and moleculgg, tessellating elements, i.e., surface polygons, edge-tucking
Similarly, variables of a boundary molecule adjacent tQ\sjecules, and vertex-tucking molecules. Thus the necessary
VTM(i) are denoted by (i, 0) andw(i, 0), where the nominal 44 gyfficient condition for obtaining a valid molecule mesh
vertexo represents the boundary. without overlapping is that every edge-tucking and vertex-
The variables are constrained at each vertex surroundedhiyking molecule is a simple polygon. Following conditions
facets. Letj,, (n =0,--- ,N — 1, whereN is the valency of are used. For everlgTM(i, j),
vertex:) denote the vertex adjacent to verterr boundaryo
connected counterclockwise in this ordering, anddét, j.,,) —m <0(i,j) <m (6)
denote the sector angle & betweenij, _i(moan) andijp. min(w(i, j),w(j,i)) > 0, @)

Fig. 7. Edge-tucking molecule is represented in terms of
two parameters: w(i, j) and 6(i, j).



andfor every vertex of ever?’ TM(7), 00 g
0<0,, < (8)

Here, we are using the sufficient condition for vertex-tuckin
molecules; conditions (7) and (8) keep every vertex-tucki
molecule convex.

4.2.2 Crease Pattern Validity
It must be ensured that (i) a crease pattern is properly gen-
erated for each tucking molecule and that (ii) the patterns {
adjacent molecules do not intersect, in order to obtain a va ?g

. 10. Sufficient condition for avoiding the intersection

i X . .Qf crease patterns is represented as an inequality using
crease pattern. It is obvious that every isosceles-trapezoi gl 4) and ~(i, )

. . . . 1
edge-tucking molecule yields a valid crease pattern, i.e.,

single extendable segment on the axis of reflection. Thus we
will focus on the conditions (i) and (ii) for vertex-tucking 2) The folded tuck forms the curvature St

molecules. : .
. o - . We propose the idea of “tuck proxy” (Section 4.3.1) that trans-
Condition (i) is satisfied for any vertex-tucking mOIGCUI?ates the former condition into the inequalities between width

that satisfies convexity conditions (7) and (8). This is becaugﬁd depth (Section 4.3.3) and the latter into the inequalities
the convexity of the vertex-tucking molecule ensures that “B%tween angles (Sect.io.n 4.3.2)

perpendicular bisectors of all the sides of the molecule lie on

the Voronoi edges. 4.3.1 Tuck Proxy

Condition (ii) is satisfied by avoiding an intersection bel-n tead of directl timating all the dear f freedom
tween the crease patterns of two adjacent vertex-tuckip tr?: th(r)ee di(r:hcer)llsi((a)ial iong Sratioﬁ ofeg ?(?Ifje(()j tu::alf \(/)ve
molecules (Figure 9). This type of intersection inside the edge- nig . . ) '

assume that the folded tuck is containeduok proxy i.e., the

precalculated shape of the tuck, which is a subsét,ahereby

-~ .-~ deriving the sufficient conditions. Tuck proxy is defined as
w Ny the union of connected triangle strips generated by inwardly
m ...... 4, 5 EXEFUdli(ng the edges of thg _sur;ac$ I(IFig_ure 11 (a)). ,
B : uck proxy is generated in the following manner. First, we
(N Ny define the direction of eacjoint axis, i.e., the axis to which
O O X the triangle strips are connected at their terminal segments,

by shooting a ray inward from each vertex. Subsequently, the
ray is trimmed by an inward offset of the surface, so that the
generated tuck proxy does not intersect itself. We connect each

tucking molecule occurs when a Voronoi vertex of the adjaceR@i" Of the joint axes generated from a pair of adjacent vertices
vertex-tucking molecule traverses a certain distance across Y{i1 @ triangle strip. Then, we obtain a valid tuck proxy inside
boundary of the edge-tucking molecule. This distance is repf8€ volume (Figurel1l (b)).

sented by the opposite angle of the Delaunay triangle incident ;
to the concerned boundary (Figure 10). A sufficient condition
for ETM(i, j) is expressed as the following inequality of thig
angle denoted by (i, j). |

Fig. 9. Intersection of the crease pattern.

W{

#(i,5) <~(i,j) + 0.5m, ) |
Tuck P
where~(i, 7) is the angle between the border segment and the F;‘fdedr}’fjcyk
diagonal of ETM(z, j). (@ (b)

. . l . .
2£(i, j) cos 50(i, j) Fig. 11. (a) Folded tuck is assumed to be contained in

w(i, j) + w(j, 1) the tuck proxy, which is an inward extrusion of the edges
on the surface. (b) Surface polygons (left) and generated
tuck proxy free of intersection (right).

v(i,4) = v(j, 1) = arctan

4.3 3D Inequality Conditions

It must be ensured that the folded shape finally follows the
original surfaceS, and every part of the folded shape ig.3.2 Tuck Angle Conditions
contained in the solid” (Figure 2). The 3D conditions are As a consequence of 2D conditions, a vertex-tucking molecule
defined as follows. can be folded such that the vertex and surrounding edges are
1) The folded tuck does not intersect and is contained @onnected (Figure 12 (a)). In order to ensure that the folded
V. edge exactly follows the edge o#, the folded tuck is first



crimp-foldedto enable the terminal segments of the strips to However, the latter condition (12) is reduced to the former
lie along the joint axis of the tuck proxy (Figure 12 (b))one (11) by introducing aink fold procedure. Sink fold is a
Subsequently, théuck angle, defined as the angle betweecommon folding technique that reflects a part of the folded
the joint axis and the edge, is further adjusted by introducirsate about a plane. Here, we apply an open sink, which is
an additional crimp fold. The addition of crimp fold reduces sink fold where all the mountain and valley assignments
the tuck angle, but cannot increase it. Therefore, the conditionfsthe creases on the plane of reflection are the same, about
required to fit the edge(i, j) accurately on the original surfacea plane perpendicular to the joint axis. This maintains the
is expressed as the following inequality between the potentddvelopability of the surface and the flexibility of the folded
tuck angle along the folded pape¢i, j) and the desired tuck shape, that is, edge-tucking molecules can be rotated along the

angle along the tuck proxy’(s, j) (Figure 12). joint axis after the sink fold.
o S Assume that everfETM(s, j) adjacent toVTM(:) satis-
7(i,7) 2 7'(i, ) fies inequality (11); thenVTM(i) is sink-folded at depth
7(i,7) can be expressed in terms @fi, j), and ¢(i, j), and ™Max (dedgdi; 7)) (Figure 13). This assumption sefen(i) =
the inequality can be represented as follows: max (dedgd; 7)), resulting in satisfying condition (12).
8irg) ~ 360.5) < 7~ 7'(.5) (10

max(d(i,7)) S

Fig. 13. If any ETM(i,j) adjacent to VTM(:) satisfies
condition (11), the depth of the VTM(7) can be adjusted
with a sink fold.

5 PREPROCESS
Fig. 12. Adjusting the tuck angle with crimp folds. 5.1 Additional Edges

In order to avoid overconstraints by convex paper conditions,
4.3.3 Tuck Width Conditions an extra edge-tucking molecule, a vertex-tucking molecule,

The folded edge-tucking molecules and vertex-tuckin d a digon are added to each edge on the boundary (Figure

molecules must be contained in the tuck proxy. This resu é)'

in the for_mation of two inequa_lities for each_ ve_rte_x. N
depth of he tk proxy. Thi conditon i described by the L N LI
ongih of the crease on the adge-tuoking melecu 1o b foded V|
onto the axisdedgd i, j) (Figure 13). —
dedgd i, j) < d'(i), Fig. 14. Adding molecules to the boundary.

which can be rewritten as

w(i,j) < 2sin(7'(4, j) — 5@(%1))d’(1)~ (11) 5.2 Triangulation

The depth of the vertex-tucking molecule is also limited)! concave polygons are triangulated, because concave poly-
Depthdyen(i) of VTM(i) is defined as the maximum distancé€©nS do not satisfy the following necessary cond|t|qn§ for (10)
from vertexi to a point on the folded vertex-tucking moleculedt the concave vertex betwe&i'M(i, jo) and ETM(i, ji).
projected to the joint axis, which is also limited k¥(:). (i, jo) + (4, 51) < 27 — a(i, j1) (13)

dyert(i) < d'(7) (12) max (7' (i, jo), 7' (4, 71)) < 7 (14)



Triangulation of polygons also helps solving the condition8.3 Translation
for origamiziation by inserting flexible edge-tucking moleculeg, the next translational step, we obtain the configuration
between facets. For this reason, other convex polygons are aigg satisfies equation (2) and inequalities (5), (7), and (19),
triangulated before mapping. However, the mapping algorithiphere (19) (discussed in Section 7.2) is a sufficient condition
itself can be applied to polyhedra with quadrilaterals, whicy (g) (10), and (11).
was tested to yield valid results in practice (Section 9). Since the rotations of the surface polygons are fixed, i.e.,
6(i,j) is constant, equation (2) is a linear equation. The

constraints for the entire model can be represented as,
6 MAPPING
C,w =Db, a7)
6.1 Variables and Constraints
whereC,, is @2Nyen X Nedge Matrix whose2m-th and(2m —

Let Nerr @and Nedge denote the number of vertex-tuckingy)-th rows correspond to equation (1), for theth vertex.
molecules and the number of edge-tucking molecules plgguation (17) also forms an underdetermined system having

boundary molecules, respectively. The configuration of tl"ﬁedge, 2Nyert = 4 Neage— 2 degrees of freedom. The solution
molecule mesh is represented by tW@qgevectors@ and gpace is calculated as,

w, whosen-th elements aré(i, j) andmin(w(i, j), w(j,%)),

respectively, wher&TM(i, j) is assigned a number. W = C/b + (Ing. — C5Cu)wo, (18)
These2Neqqe Variables are constrained ByVye equalities . N _

represented by (1) and (2). This constructs an underdetermidéigre C;; = C,,(C,C,)~" is the pseudo-inverse of,,

system, within which the other inequalities are solved. TH&d wo is an arbitrary value.

degree of freedom of this system is calculated Nagige — Similarly to the rotational phase, we solve the inequalities
3, becauseNyer = %Neage+ 1 When all the polygons are under the abovementioned constraints by iteratively updating
triangulated and boundary edges are added. wo and projecting it to the constrained space. The projection

The actual mapping algorithm is performed in the followin® Performed ir_‘O(NeQd o using the precalculated LU factor-
two steps; (i) rotations of the polygons, represented@pgre ization of matrixC,,C,,.

determined and (ii) translations of the polygons, represented™o iS updated according to the gradient of the penalty
by w, are calculated. function calculated from inequalities (5), (7), and (19). We

set the penalty function as a linear combination of the sum
of squares of the errors and the external work from the user
6.2 Rotation input. The penalty function is expressed as,

In the rotational phase, we obtaif that satisfies linear L, :coE(5,7)+c1E(19)+cQ|Aw|2,

equation (1) and Ilqear |nequ'al|t|es (), (6).’ and (8). . where Aw is a change in widths provided by the user input,
For each vertex is constrained by equation (1), which can
. . . and Ei7) and E19) represent the sum of squares of the

be represented by the following linear equation. '

errors calculated from the inequalities (5) and (7), and (19),
Co0 — 15 respectivelycy, c1, Or ¢ can attain any constant positive value.
v =8, ( ) . . . _ .p2 . i
To eliminate scale dependenay, : ¢; : co = 1: {3,: 1S
where Cy is an Nyert x Neage Matrix whosem-th row corre- chosen, wherd, is the average length of the edges of the
sponds to equation (1) for the-th vertex, andz is the Ner-  POIYhECrON.

vector whose element represents the Gauss area at each verted'€ combination of iterative update in the configuration and
This is an underdetermined system haviNggge — Nyert = projection to the constraint space enables a system that allows

% Negge— 1 degrees of freedom. The solution space is givef USEr tq gdit the crease pattern interactively while satisfying
as, the conditions (2), (5), (7), and (19).

— Ot +
6= Cogt (vw = Cy Co)0- (16) 6.4 Existence of the Solution
where Cy™ = CJ(CyCJ)~! is the pseudo-inverse dfy, As linear inequalities (5) and (7) are dominant in the trans-
and 6, is an arbitrary configuration. Within this constrainedational step, we did not experience any problem in the
space, inequalities represented by (4), (6), and (8) are solvednvergence to the global minimum. However, the global

We solve the inequalities under the constraints by iterativetginimum is not always the valid solution. In general, the
updating 8, and projecting it to the constrained spa&. penalty function in the translational phase does not ensure the
is updated according to the gradient of the penalty functi@xistence of the solution.
Ey defined as the sum of squares of the errors from linearHere, we focus on the dominant conditions (5) and (7) for
inequalities (4), (6), and (8). Due to the convexity of thesthe existence of the solution; they are represented,a$ 0,
conditions, the calculation always converges to the globilr any n. There exists a solution that satisfies this condition,
minimum. Additionally, although not proved, it is observedf there exists any solution of the homogeneous equation
in every tested model, that the global minimumoisi.e., all Cyw = 0 such thatw,, > 0 for any n. The homogeneous
the conditions are satisfied. solution corresponds to the graph derived by the molecule



meshwith infinitely small surface polygons. If any of theAlgorithm 1 Mapping: Calculaté andw from a preprocessed

elements ofw is not positive, the graph is crossed or reversefll€shM/
updateCy andg from M

LU factorize CyC} (precalculation ofcg)
6.5 Remapping 6—0

. . . loop
Our mapping algorithm discards the degrees of freedom when 0 ng i (INedge— CJCQ) 0

fixing the rotations of the polygons, which is the main . . -
cause of the non-existence of the solution. If there exists wh|le| c<|)ntd|jtéons 514)v§2) 158) NOT gf?'Sf'edZ 6) (8
no solution in the translational step, the initial angles must ?LSUEEEIH an_ C+GC r)ovacon itions (4) (6) (8)
be modified by recalculating the rotation in order to reduce calcaulate é‘{égp cize byeline :earch
the penaltyEs 7). The initial angles are modified according 00— aVE
to the following steps (Figure 15): (i) A valid graph free end while o
of intersections is determined by ignoring the constraints. updateC,, andb from 6
Such a graph is obtained by a robust parameterization method LU facto:ijzeC CT (precalculation ofCH)
such as barycentric embedding [34]. (i) Then, the increase w— C+b wrw w
A® in the angle between the adjacent edges of the graph is i w
measured. (iii) The increase in the angles of the edge-tucking reri)fegonditions (5) (7) (19) satisfiethen
moleculesA@ is determined from\® by solving equation (3), end
in a least square sense. (iv) Finally, we recalculate equation else
(16) using these modified angles as the initial configuration calculateE,, andV 2, from conditions (5) (7) (19)
6y. The overall process is performed iteratively until the VE. (Iw _C +% WE
system achieves a valid configuration. This iteration may not | “’l ¢ Zredge . wb wl v h
converge to a solution, in which case the surface must be caculate seva5|za y line searc
topologically modified (normally, by adding cuts) by user en‘:jv irwia v
interaction (Section 8.1). Algorithm 1 describes the mapping . : -
until |aVE,| is sufficiently small

and remapping processes. while conditions (5) NOT satisfiedo
calculateF,, and VE,, from conditions (5)
VEy — (INge— CELCu)VE,
calculate step size by line search
w—w—aVFk,
end while
generate barycentric graph using the convex boundary.
calculateA ®yarget from the graph

0o |
setAf to minimize [AB@get— %AH
0—0+ A0

end loop

(©

edge-tuckingmolecule. The width of the derived edge-tucking
molecule with angléyy, is expressed as
Fig. 15. Example of remapping. (a) Homogeneous solu- .
tion. (b) Barycentric embedding. (c) Modified valid graph. Wiy = WMW
sin(0/2)

where # and w denote the angle and width of the original

edge-tucking molecule, respectively. Therefore, edge splitting
7/ EDGE SPLITTING is performed to subdivide edge-tucking molecules into suffi-
7.1 Splitting ciently narrow edge-tucking molecules (Figure 16(c)), which

satisfy the crease pattern intersection (9) and width conditions
We introduce the concept @fdge splittingfor solving condi- (11).

tions represented by inequalities (9), (10), and (11). An edge-
tucking molecule can split into two edge-tucking molecules
with one digon between them without changing the originzZI'
polygons of the surface. This technique is performed locallyor each edge-tucking molecule, we obtain a pair of arcs on
i.e., without changing the location of the other part of theshich the end points of an added digon is located. Assume
molecule mesh (Figure 16). The digon is inserted to dividbat we obtain the configuration of the original molecule mesh
the sector angle between the pair of edges of the origiraich that the arcs do not intersect, and each arc is finitely

2 Relaxed Conditions
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mapping algorithm and generates the crease pattern (Figure 18
(c)). The user can manipulate the configuration and the crease
pattern through a standard pointing device (e.g. mouse). Since
the system both updates and displays the crease pattern and
the resulting shape of the folded tuck, a user can interactively
design three-dimensional origami models using this system.

(@ (b)
Fig. 16. Edge splitting. Cut Map

N D | c’ D

separated from the other arcs, excluding any pair of adjact F

arcs sharing a vertex (Figure 17(a)). @
The edge-tucking molecules can be subdivided such that any / _

corner vertex of the original vertex-tucking molecule belongs , _

to a single Delaunay triangle. Assume that conditions (13*;2%3;‘2;1 ’ 5

and (14) are satisfied; then, the shape of the corner Delaunay

Crease Pattern
Manipulation

triangle can be flexibly changed such thaj,(:,50) and \

Taiv (%, j1) satisfy condition (10), by controllinggi (¢, jo) and @ _
waiv(4, 71) (Figure 17(b)). Any of other Delaunay triangles is : /5
constructed by connecting two adjacent vertices on an arc and g% |i>

a point on another arc. In the case of such a triangig(s, j)

can be set to a sufficiently small value by subdividing the
edge-tucking molecules. Therefore, the tuck angle condition
(10) can be satisfied if and only if the tuck proxy satisfies
conditions (13) and (14).

Fig. 18. The system for designing three-dimensional
(i) origami models. Changing cuts yields different visible
>— _seams and crease patterns for the same genus 2 poly-
Tav(00)  hedron.

(a) (b) 8.1 Topological Manipulation

The input is given as an orientable polygon mesh of arbitrary
Fig. 17. (a) Configuration of the molecule mesh in which  genus, which is cut to a polygonal schema ready to be mapped.
no arcs intersect. (b) Delaunay triangle at the corner As the cut, i.e., the boundary, is visible as a separated seam on
can be transformed by controlling the width of the edge- the folded model, the system provides valid cuts controllable
tucking molecules. according to the preference of the user, in the following
manner.

Therefore, edge splitting relaxes conditions (9), (10), and First, the system constructs a tree shape from a given mesh
(11), and replaces them with a sufficient condition that eveby breadth-first flooding. The boundary is then simplified by
arc does not intersect. The following sufficient condition isemoving branches and jags. The user can specify the root of
used. 1 the tree, which will be located approximately in the middle of

min(ﬁO(i7j)7ﬁl (Zaj)) > _§G(ivj)’ (19) the paper.

Then, the boundary can be further modified. The mod-
where (y(i,7) and £1(i,j) denote the base angles of thefication is performed through the following two types of
Delaunay triangle whose base segment is located betwgesls: (i) a tool to add (or delete) a selected edge into the
VTM(i) and ETM(i, j). Condition (19) forces each arc toexisting boundary by connecting it via the shortest path and

be contained in a single Delaunay triangle. (i) a tool to move the boundary by altering the connectivity
around selected facets (Figure 19). A combination of these
8 SYSTEM tools enables the user to freely modify the boundary while

The proposed method is implemented as an interactive thrgéa}intaining the surface homeomorphic to a disk throughout

dimensional origami design system (Figure 1 Top). The inpme manipulation.

figure is given as a polygon mesh (Figure 18 (a)). First, the sys- ) ]

tem constructs cuts to obtain the polygonal schema, which &4 Crease Pattern Manipulation

be further modified by a user (Figure 18 (b)). Then, the systenhile the system automatically solves the inequalities, a user
maps the polygons of the input polyhedral surface based on ttes modify the crease pattern in order to improve the aesthetics
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ﬁ% 9 RESULTS
@@@ a&g 9.1 Examples

The proposed method was applied to six polyhedral surfaces.
SAVAY ﬁ& <j @ The generated crease patterns were realized to form real paper
m m models, each of which was folded from one piece of paper,
as shown in Figure 22. In models (a)-(d), the resulting crease
patterns were automatically determined from the original topo-
logical disk meshes. Since model (e) was homeomorphic to
a sphere, the software automatically determined the cut path
on the surface. The cut path was then symmetrically oriented
through a user interface for aesthetic reason. Thus far, the

of the model, including the shape of the folded tuck and tH!nNy model (f) is the most complicated models tested and
crease pattern itself. In order to modify the crease pattefRlded- Although the original mesh was homeomorphic to
the system provides a tool to pick and drag mapped polygo%sd'Sk* additional user mteracthn for editing cut path was
and a tool to increase or decrease the widths of specified edgBSeSsary, because the automatically generated crease pattern
tucking molecules. This tool allows a user to modify the creadé®S highly inefficient (Figure 24). The paths behind the ears

pattern without changing the representing three-dimensiof§"® chosen intuitively according to an empirical strategy in
polyhedral surface. designing origami to place long flaps onto the perimeter of the

paper. In these 6 models, the layouts were determined by the

The user input is converted into penalty forces that affo-step approach, requiring no remapping process.
applied to edge-tucking molecules when the translational con-

figuration is being updated (Section 6.3). Iterative calculations,

. ) .92 Results of Foldin
are performed at an interactive frame rate for models wi esults of Folding

shown in Section 9.3. actual sheets of paper using the crease patterns generated by

. ) - the design system (Figure 22). The original shape of the paper

The system facilitates the automatic splitting of edg§yas 4 convex polygon. First, the generated crease pattern data
tucking molec_ules, in order to solve the inequalities. A USRS sentto a cutting plotter, which scores a sheet of paper along
can also obtain the desired crease pattern by manpglly SPRLE crease pattern with its blade. Then, the paper is precreased
fying the molecules to be split or merged. After splitting, they f5/ded into a three-dimensional model, without the need
LU factonzapon fgr solving (18) is recalculated, which aIIowqKor extra folds for shaping. The approximate time needed to
further manipulation of the crease pattern. fold a sheet of paper into the desired three-dimensional shape

The modification of the crease pattern alters the shapeisfshown in Figure 23.
the folded tuck behind the surface, which is visible when The scoring by a cutting plotter helps the folder to fold
folding a surface with a boundary (Figure 20). The foldegdrecisely along the crease pattern. A laser cutter is also suitable
tuck is visualized and continuously updated to follow théor this purpose. In the given examples, the paper is scored
modified layout; this allows a user to understand the resfilom one side for aesthetic reason; however, scoring the paper
while designing. from both sides can help to fold it easily.

Visible seams on a folded model lie on the lines of the
three-dimensional mesh, which has a certain aesthetic quality,
especially when backlit (Figure 21). The similar quality is
pursued by the existing origami technique known as “origami
tessellations” [35], [36], which expresses the geometric beauty
A = ! of synthetic and natural patterns through repetitive pattern on
A AN a plane. Our results extend this type of expression to a three-

= - dimensional one.

- The origami models were practically realizable because of
the following three reasons: thickness (Section 9.2.1), struc-
tural stiffness (Section 9.2.2), and efficiency (Section 9.2.3).

Fig. 19. Relocation of the perimeter by altering the
connectivity around a facet.

() (b) 9.2.1 Thickness

From the viewpoint of thickness, the feasibility in folding is
examined by considering the number of layers of paper folded
Fig. 20. Orientable surface with a boundary. (a) Tuck is at the same fold. In the proposed method, this type of folding
folded inside. (b) Same mesh with opposite orientation. occurs only when the folded tuck composed 2ofayers of
The tuck is folded outside. paper is crimp-folded.
The bunny model shown in Figure 22(f) is folded from
a sheet of convex paper that is approximatBl) mm in
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o "

(a)Hyperbolic Paraboloid (b)Gaussian (c)Mouse (d)Mask (e)Tetrapod (f)Stanford Bunny

Fig. 22. Origami models designed using the system. Top row shows the crease patterns. Middle row shows the actual
models folded from a sheet of paper (each).

study and the estimated value of those in previous study [27]
are compared, as shown in Figure 23. The degrees of instability
in our study are substantially lower, which indicates a higher

stiffness of the surface.

9.2.3 Efficiency

Although the example models were folded from a convex
piece of paper, they could also be folded from a square
piece of paper because the boundary of the crease pattern
Fig. 21. Backlit origami models. is approximately circular in shape, which can be efficiently
packed in a square.

The efficiency of a crease pattern can be defined as the ratio
diameter and 16 g/m? in thickness. This paper is thicker tharyt the surface area of the input model to that of the square
that used for folding some conventional super complex origamper to be folded. The efficiency of the crease patterns of

models, which require paper with a thicknessl16fg/m?. the example models is within the range @1 to 0.5, which
_ is considerably better than previous studies (Figure 23). For
9.2.2 Structural Stiffness example, if a Gaussian model, as shown in Figure 23(b), with

The resulting folded shape holds its own shape, because @féiciency 0f0.415 is to be folded by the method described in
crimp-folded tucking molecules prevent each vertex to splR7], the most optimistic estimation of the efficiencyli®017
apart. The stiffness of the shape can be measured in term@&®fthe method requires a strip narrower thani 100.
the stability of the target polyhedral surface homeomorphic to
a disk. _ . _ 9.3 Time

A truss model is used to briefly examine the stability of; ure 23 shows the amount of time required for performing
the surface polyhedron. The surface is triangulated and all culations on a laptop PC with a Pentium M50 GHz
edges of the polyhedron are regarded as rigid bars, which re g SSEZ2 instructions through ATLAS. Precalculation was

in an unstable structure. In g(_e_neral, the number O.f dggreescg pleted in a few seconds, and the iterative calculation was
freedom or degrees of instability of this structure is given b}ﬁerformed at an interactive frame rate. The time required to

Degrees of Instability= 30 — ¢ — 6 = ey — 3, converge varied with models, and it was withifi s for the
models used as examples in this study. The longer convergence
whereuw, e, andeg are the number of vertices, edges, and edgéme was attributed to the use of the gradient descent method,
on the boundary of the triangulated surface, respectively. Tiwbich can be replaced with a faster method. Nevertheless, this
calculated degrees of instability of the folded models in thisas a fairly reasonable amount of time over which we could
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repeatedlymodify the boundary and perform remapping untisuch as triangular remeshing [37], [38], [39], [40], [41],
we obtain a desired crease pattern, before actually folding tipgandrangulation [42], [7], and segmentation with developable

model for several hours. patches [43], [8].
The tessellation itself can be a variable that is optimized
(@) b © D o O within the origamization procedure. In order to improve ro-

bustness of the system by changing the tessellation, we intend
, ‘ to characterize a “nice” mesh that ensures a valid solution and
e OG0 s U 0 improves the efficiency. An empirical observation indicates
# Boundary Edges 39 32 16 14 20 50 that this characteristic is not simply the regularity of triangles
# Edge-Tucking Molecules 208 208 213 317 446 606 and connection, as opposed to a naive expectation.
As mentioned in the introduction, our method can po-

Deg. Tnstability 99 29 13 11 17 47 ; X , . o ’ .
Deg. Tnstability in method[8] 389 382 548 960 1222 1868 tentially be used in a wide variety of applications since it
Efficency (0180 0.415  0.272  0.265 0.143  0.172 provides a solution for the general and critical problem of
Folding Time (approx.) [l 2 2 3 6 4 10 achieving an arbitrary three-dimensional shape from a single
Precaleulation Tie [s 0.047  0.047  0.16 016 040 1.2 sheet of material. However, it is necessary to further improve
Iteration Frame Rate [fps] 128 128 930 511 342 165 our method in order to apply it to widespread industrial
Convergence Time 5] 0,156~ 0.094 ~ 3.81 191 403 150 purposes. This is because our method produces a number of

crimp-folds, thus locking other folds; such crimp-folds prevent
a material from transforming smoothly into a desired state
without stretching, and they may potentially allow thick or
brittle materials to rupture at the vertices.

One of the improvements to our method that is worth con-

10 DRAWBACKS AND FUTURE WORKS sidering is the optimization of the configuration of the mesh
and the tuck proxy such that all the crimp-folds disappear. This

It should be noted that the proposed algorithm does not alw‘?ﬁuld significantly simplify the manufacturing of a desired

guarantee a solution, as stated in Section 6.5. Some mo . .
. . . ; . SUrface and it would be more suitable for on-demand or mass
fail to be validly mapped even after the iteration of remappin

N N . r;%rjoduction and for on-site construction. This will also lead
or result in highly inefficient crease patterns. These failure a .
to_further studies on transformable or deployable structures

inefficiency occur mainly because a solution is dependent gn . )
at can tightly cover freeform surfaces; such structures could
the topology of the surface and the mesh.

A problem of this kind is often solved by appropriatel){mtem'a”y be used for the designs of prefabricated architec-

. : - “tyres for use in severe environments such as in space, medical
modifying the boundary on the surface using tools prowdeﬂH P

by the system (Figure 24). In general, adding boundary ed%ewces L_Jsed in ml_mmally invasive surgery, and several types
. : watertight containers that can be compactly packaged.
increases the degrees of freedom and enables a valid solution.
It is further observed that placing the boundary onto acute
points on the surface increases the efficiency of the creds&# CONCLUSION

pattern; this is a similar strategy used in conventional origanrﬂ_I

designs. However, the process still relied on intuitive trial a crease pattern for folding a piece of paper into a given

error by an experienced.origarr.]i dgsigner. we inte.nd to deyel 8thedral surface, without cutting the paper. The algorithm
a method for automatically finding an appropriate cutlin 3 implemented as an interactive origami design system

from a given mesh. which enabled the generation of crease patterns from several
computer-generated three-dimensional models with less than
400 polygons, in a short time span. The generated crease
patterns were folded in practice to produce highly complex
three-dimensional origami models, for the first time.

The method sometimes fails to satisfy conditions or gener-
ates highly inefficient crease patterns. In future, we intend to
develop a more robust algorithm to avoid such failure and to
Fig. 24. Left: Bunny without modification of the boundary improve the efficiency of the generated crease pattern.
results in the generation of a crease pattern with a low
efficiency (0.007). Right: Efficiency of the bunny with
modified boundary behind the ears is 0.172.

Fig. 23. Results of the system

is paper presented the first practical method for obtaining
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